Engineering Report No. G-113-36 THE MODEL K-16B V/STOL RESEARCH AMPHIBIOUS AIRCRAFT: Research and Development (February 1956 - September 1962) Summary Report March, 1967 Distribution of this document is unlimited. Harry S. Egerton James E. Fitzpatrick Prepared under Contract NOa(s) 56-549c for the Air Systems Command, Department of the Navy, by Kaman Aircraft, Bloomfield, Connecticut Ruproduced by the CLEARINGHOUSE for Foderal Scientific & Technical Intermation Springfield Val 22151 SEP ! 186 ### NOTICES This report has been reviewed by the Naval Air Systems Command. The findings in this report are those of the contractor, and not those of the Naval Air Systems Command or the Department of the Navy. When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto. Qualified requestors may obtain copies of this report from the Defense Document Center, Cameron Station, Alexandria, Virginia, 22314. N N [] #### THE MODEL K-16B V/STOL RESEARCH AMPHIBIOUS AIRCRAFT: Research and Development (February 1956 - September 1962) Summary Report March, 1967 Harry S. Egerton James E. Fitzpatrick Prepared under Contract NOa(s) 56-549c for the Air Systems Command, Department of the Navy, by Kaman Aircraft Corporation, Bloomfield, Connecticut Analytical and experimental research was conducted to investigate the use of a variable camber, cyclic controlled propeller, in combination with a partially-tilting wing with full-span flaps, to permit V/STOL aircraft operation. features were incorporated in a full scale experimental aircraft designated the K-16B. This aircraft was used to explore the feasibility of a unified propulsion-control system designed to reconcile the conflict between the requirements of static thrust in hover and high-speed propeller efficiency, and to provide helicopter-type control in hover without the need for auxiliary control devices. This is accomplished by trailing edge flaps in the blades of the propeller. Collective deflection of these flaps i creases blade camber for high static thrust. They are retracted in forward flight for a clean cruising-blade profile. Cyclic deflection of the flaps furnishes control moments in hover. The system was investigated on ground bench stands and in full-scale powered model tests of the K-16B. in the NASA, Ames Research Center, 20 x 80 foot wind tunnel. The configuration tested proved to have insufficient thrust for vertical flight as its instrumented test gross weight; lateral and directional control power was deficient; severe wing and horizontal tail stall were encountered in portions of the transition region; and _ number of detail design deficiencies became evident. For these reasons, flight tests were not conducted. Data from the wind-tunnel tests, however, served to validate methods of analysis developed during the program, and the final methods show good correlation. This report presents the data and the methods and correlations; describes the testing performed and the problems encounteres; and shows the probable solutions to the problems encountered. It is concluded that the propulsive rotor is a feasible concept for propeller-driver V/STOL aircraft, offering a unique combination of advantages for propulsion and control, of such aircraft; that a practical and effective rotor could probable be developed using the research data and methods of analysis developed in this program. This report was initiated by the Air Systems Command, Department of the Navy. The research and development work upon which it is based was accomplished under Contract NOa(s)56-549c by Kaman Aircraft Corporation of Bloomfield, Connecticut during the period from February 1956 to September 1962. The senior author, Mr. Harry S. Egerton, was Project Engineer reporting to Mr. Donald W. Robinson, Jr., Chief Research Engineer. Aerodynamic analyses were performed under the direction of Mr. James E. Fitzpatrick, Project Aerodynamicist. The program was conducted under the direction of Mr. W. Koven, RAAD-322, assisted by Mr. B. Stein and Commanders Kuser, Meshier, and Oberholtzer. Acknowledgement is made to the Curtiss-Wright Corporation of Paterson, New Jersey, for t'e loan of a "Mamba" engine to power the second phase research test stand, and to the Grumman Aircraft Engineering Corporation, Bethpage, L.I., New York, for furnishing detail design data of the JRF-5 airplane. This document, including the illustrations, is unclassified in its entirety. Donald W. Robinson, Jr. ## CONTENTS _____ | | Page | |---|------------| | | | | | | | | | | Introduction | 1 | | History and Philosophy of Development | | | Conception | 3
3 | | Ground Research Stands | 8 | | Flight Research Aircraft | 9 | | Analyses and Tests | 12 | | Aerodynamics | 16 | | Dynamics | 23 | | Stress Analysis | 26 | | Static Structure | 26 | | Dynamic Systems | 28 | | Test Article Development Propulsive Rotor | | | Propulsive Rotor | 33 | | Hover Performance | 33 | | Transition Performance | 34 | | Performance Improvement | 35 | | Component Hardware | 40 | | Component Improvement | 42 | | Airframe | 44 | | Performance Improvement | 47 | | Power-And-Drive System | 50 | | Miscellaneous | 5 2 | | Full-Scale Thrust Stand and Wind Tunnel Program | 53 | | Hover | 54 | | Performance (Propulsive-Rotor) | 55 | | Performance (Wing-Flap) | 59 | | Controllability | 69 | | Transition | 92 | | Airplane Performance | 92 | | Rotor Performance | 101 | | Control | 104 | | Forward Flight Flapping Conclusions | 111 | | References | 115 | | Figures | 117 | | Symbols | 119 | | DAMPOTA | 120 | | | | Page | |---------|--|------| | | | | | Appendi | l Ces | | | Α. | Principles of Propulsive Rotor Control | 122 | | | Vehicle Description | 125 | | | Details of Full-Scale Tunnel Tests | 135 | | | Test Equipment | 135 | | | Test Operation | 135 | | | Determination of Engine Power | 140 | | D. | Method of Determining Rotor | | | | Performance | 153 | | | Hover | 153 | | | Forward Flight | 134 | | | Transition | 155 | | | Rotor Controllability in | | | | Hovering Flight | 157 | | | Cyclic Inflow Variation | 160 | | | Hub Moment | 162 | | | Longitudinal Trim and Control | 164 | | | Control to Trim | 169 | | | K-16B Stability and Control | 173 | | F. | K-16B Performance | 175 | | G | Distribution | 179 | . | Information about the hover and transition stability and control characteristics of V/STOL aircraft that have flown is sparse and closely guarded. But, it has been officially acknowledged that all V/STOL's that have flown have exhibited control and stability deficiencies, and that propeller driven V/STOL's have also been wanting in static thrust. A description is presented of a V/STOL aircraft research program that demonstrates a unified propulsion—control system that resolves many of the difficulties. A propeller can be an efficient, unified propulsion-control unit. But success using a conventional propeller is illusory. V/STOL experience has shown the conventional propeller to be an inefficient static thrust producer. When the propeller is designed for static thrust requirements, the same experience shows that cruise efficiency Adding blade-pitch cyclic control makes matters suffers. worse. Hover cyclic control requires cyclic lift, but control is limited by blade stall if conventional propellers This becomes apparent if a blade-section lift are used. curve is pictured. In hover, the blade will be very highly loaded, and the mean lift coefficient will be at a point on the curve that is very near stall. Cyclic control will call for additional lift, which will cause the blades to stall. Of course, the mean lift coefficient can be backed down the curve to provide a margin for cyclic lift, but there will be an accompanying decrease in static thrust capacity. A high-lift device in a propeller will give additional mean lift coefficient in hover and reduced coefficient in cruise, permitting the propeller to satisfy both ends of the speed spectrum. But this is only a partial solution. For example, it is desirable to eliminate a tail rotor and its recognized disadvantages of lift/pitch coupling, high-frequency vibration induced in the structure, and the high maintenance cost of the drive. The high-lift device, then, must also provide for control analogous to helicopter control. It can provide this control without stall because of its ability to furnish increased lift coefficient. Our approach to a high-lift device is trailing edge flaps in the blades. Collective deflection of them provides variable camber, resolving the conflict between static thrust in hover and propeller efficiency in fixed-wing flight. Cyclic deflection of the flaps results in cyclic lift control in a manner deplicating the hovering control of a helicopter. For cruising flight, the propeller provides thrust in a conventional manner with the blade flaps undeflected. The concept has been incorporated in a twin prepulsive-rotor (cyclic propeller), partial-tilting-wing, V/STOL amphibious airplane designed to applicable Military specifications for both Class VU and helicopter structural and flying qualities. Under Bureau of Naval Weapor Contract NOa(s)56-549c, we conducted intensive research of the approach, using a modified JRF-5 airframe which was redesignated as the Model K-16B. The tilt-wing accommodates symmetrically disposed powerplants,
each driving a propulsive-rotor. The rotors are interconnected to prevent asymmetric thrust in the event of a one-engine failure. Correlation of data from ground stand and full scale wind tunnel testing confirms the propulsive-rotor to be an efficient propulsion-control assembly. The testing illuminated several mechanical problems, principally with oscillating bearings in the blade-flap control system. But the solutions are in hand with a redesign of the control system geometry, and with the development of high-capacity self-lubricating bearings and elastomeric bearings. Though the answers to many questions are now known, the developmental implementation of second generation V/STOL aircraft such as the XC142 and the X22 caused funding limitations that prevented flight research with the K-16B. This report presents details of conception, research, and evaluation of this V/STOL design, along with actual or recommended solutions of problems that arose. # HISTORY AND PHILOSOPHY OF DEVELOPMENT #### **CONCEPTION** Controllability of the VTOL at low speeds must be comparable to the helicopter if it is to maneuver effectively near the ground. Precise spot-hovering, particularly in gusts and winds up to 30 knots, compounds the problems of adequate hover control. Further, the conflict between propeller performance requirements for hover and for fixed-wing cruise must be resolved. Our V/STOL studies began in 1954 and were concerned with the area of propulsion. But, very early in the study it was recognized that operational feasibility could not be obtained until effective controllability in the hover and low-speed regime could be demonstrated - an area in which little or no effort was being applied at that time. It was necessary to make the first attempt to derive controllability criteria for the low-speed regime of V/STOL aircraft. Because the helicopter was the only aircraft type that had achieved satisfactory VTOL control, it was logical to base a set of working criteria on the type. Discussions with company test pilots indicated that maximum acceleration about the three body axes was a good measure of helicopter controllability in hover. This appeared to be a reasonable approach because angular accelerations of the aircraft produce preportional translational accelerations at the pilot's seat - an important item of sensory information used by the pilot for controlling the vehicle. By plotting maximum angular acceleration in pitch, roll, and yaw for known successful helicopters against gross weight, a set of working criteria was established. For representative V/STOL configurations a good "rule-of-thumb" was found: A maximum pitching moment equivalent to that produced by a vertical thrust at the tail of approximately 20 percent of gross weight is required in pitch; 10 percent of gross weight at each wing tip in roll; and 6 percent of gross weight at the tail in yaw. Obtaining these amounts of thrust with auxiliary devices such as blowers, engine bleed, jet engines, or tail rotors appeared either impractical or costly in terms of fuel consumption, weight penalty, or complexity. It was decided that the best compromise for a subsonic configuration would be a propeller-driven vehicle with a disc loading between that of a normal helicopter rotor and a conventional propel'ar. If range and speed requirements are relatively modes—and if extensive hovering is required, then the natural choice is the helicopter. On the other hand, if long range and high speed are primary considerations, the normal approach would be to impart VTOL capability to the conventional high-efficiency airplane. Where speeds greater than 400 knots are not required, an efficient approach is the tilt-wing, propeller-driven configuration. It is apparent that the design of a control system concerns first, the selection of methods to produce control forces in their proper locations; second, the design of a system that transforms pilot commands into properly proportioned actuation of the control force producers. A less obvious aspect of hovering control is that of providing translational forces along the three body axes. To hover the aircraft over a precise spot, the pilot must be able to maneuver the aircraft fore and aft, from side to side, and up and down, not only in still air but also in gusts and winds up to 30 knots. It is desirable that the aircraft be able to provide these translational forces with a minimum of angular rotation because the time response, particularly for large aircraft, and the relative disorientation introduced by using only angular rotation to produce translations. Forces increases piloting difficulties. Hence, there is a desirable relationship between the translational forces and the control moments, in terms of magnitude and time response, for the aircraft to provide easy piloting technique. Roll control can be attained by differential pitch of the right- and left-hand propellers. An apparently straightforward way for obtaining yaw control is by differential aileron. But in ground effect the ailerons tend to lose some of their effectiveness - as much as 50 percent. Now, from theory based on a 25 percent-chord aileron, the value for aileron effective- ness $(d \propto /d d)$ is 0.5. This value can be affected by nacelle shape, slipstream rotation, or ground effect, and might be reduced to as little as 0.2. To get the value of 0.5 in ground effect the ailerons would have to be relatively very large. Tail fans also have been used for directional control but have disadvantages both mechanical and aerodynamic, the latter in particular in high-speed flight. pitch control might be attained with a wing flap on a low-wing configuration that might give the flap an appreciable moment arm, but it will result in an ungainly configuration. A tail rotor adds mechanical complications, requires an appreciable amount of power, introduces vertical acceleration coupling, does not provide fore-and-aft translational forces, and gives drag in forward flight. A jet engine or a blower is impractical from a fuel consumption standpoint. A cyclic control system has the advantage of providing control moments about, and translational forces along all the aircraft axes in a manner similar to that of a helicopter. Because the thrust vector is tilted with cyclic control, a translational force that anticipates angular rotation is produced. Hover cyclic control is limited by blade stall if simply added to conventional propellers. V/STOL propeller blades are highly loaded in hover (very near stall), and it is desirable to carry even higher \bar{C}_{1} . Cyclic control means cyclic C₁, imposing additional burdens on blade loading. According to Fay (41), an invariant-camber propeller blade will generate appreciable control power within the capability of the blade without stall provided that C_{L} is comparable to helicopter rotor design practice. But such a blade will have unacceptably poor efficiency at the low thrust coefficients required for cruise. Blade trailing edge flaps, being high lift devices, give additional cyclic C, additional \tilde{C}_1 in hover and reduced \tilde{C}_1 in cruise by retraction nearer to best L/D - and therefore better efficiency. incorporation of a blade flap allows the selection of a blade profile and activity factor compatible with the highspeed propeller requirements, but by collective flap deflection attain the higher lift coefficients (because of the greater virtual camber) required for hover performance, with ample margin for necessary cyclic control and trim inputs To minimize the cruising efficiency penalty that a high-activity-factor static thrusting propeller entails, it is advantageous to operate the hovering propeller at as high a blade loading as is possible. For example, to satisfy without stall. hovering requirements a highly cambered airfoil is necessary to obtain a high blade loading. The rapid drop in required thrust from hovering to forward flight, however, forces the propeller to operate at low thrust coefficients in cruise. To operate efficiently at these low coefficients, a low solidity is needed to keep the blade loading near the maximum lift/drag ratio on the blade section. Variable camber blades will resolve these conflicting requirements. The beauty of the concept can be shown by an illustrative blade-section lift curve. In hover, an invari- ant camber blade, designed for a reasonable cruise efficiency, would be operating at Point A on Line 1. Cyclic control requires additional C_L . A cy- clic control input then would move the blade over the peak into stall. The mean lift coefficient will have to be backed off to Point A to provide a margin for cyclic control, but there will be an accompanying decay in propeller hover performance. A propulsive rotor, designed for the same cruise efficiency, could have a curve represented by Line 2 because of its variable camber capability. would operate at Point B. The trailing edge flap of the propulsive-rotor blade is a high-lift device; so, a flap deflection for cyclic control would result in Line 3. There is no decay in hover performance, and there is an incremental increase in $\mathbf{C}_{\mathbf{L}}$ for cyclic control to Point C, without blade stall. For fixed-wing flight, a propulsive-rotor with flap retracted would be equivalent to a conventional propeller in terms of geometry, twist, camber, and efficiency. Kaman helicopters have been hallmarked by their servo-flap system. A so-called "buried" flap had been extensively analyzed and flight-tested under Bureau of Naval Weapons Contract NOa(s)52-622 and reported in KAC Reports T-86(42); G-43(43); and G-51(44). brawing on this background, a propulsive-rotor was designed with a twist distribution for reasonably-high-speed cruise efficiency, but reconciling the conflicting requirements for cruise efficiency and high static thrust in hover by using a trailing edge flap to provide a variable camber blade. The
introduction of cyclic lift control by cyclic deflection of the flap presented an economical system for attaining the control forces and moments. A flapping blade was adopted to reduce the root bending stresses caused not only by the thrust offset, but also by the one-per-rev vibratory stresses characteristic of the high angle-of-attack condition of VTOL and STOL aircraft in transition flight. The strip analysis method (Appendix D) used for hovering flight is conservative when compared with a propeller or similar thrusting characteristics. The reasons are twofold. The strip analysis method makes use of two-dimensional data which includes the effect of stall. In forward cruising flight the method is good because the sections are operating far below the stall. In hovering flight, because of high compromise twists, the inboard sections are operating at an angle-of-attack beyond which stall would occur in two-dimensional flow. But on an operating propeller a strong radial pressure gradient exists due to higher velocities at the outboard stations. The spanwise pressure gradient produced by rotation has the effect of sweeping the boundary layer outboard toward the tip. It thus postpones the stall at more inboard stations. On a model propeller, the maximum lift at the 80 percent radius station was increased by approximately 30 percent as a result of this boundary layer thinning (Himmelskamp - 45). In addition, when blade stall proceeds toward the tip, a tip vortex sheet is produced which increases blade lift and drag (Kucheman - 46). No method has been found for relating the strength of these vortex sheets to the tip angle-of-attack and load distribution; therefore they are not accounted for in the two-dimensional strip analysis. Because the effect of the natural boundary layer control on the inboard sections is not taken into account in the present analytical method, the calculated results are conservative. The analytical predictions were so encouraging the Bureau of Naval Weapons awarded Contract NOa(s)56-549c (February 1956) to continue the research. In view of the unique nature of the concept, the Bureau elected to design the program in phases. #### GROUND RESEARCH STANDS The first phase was designed to substantiate the predictions with a feasibility model. A prototype 3-bladed reter of 14-foot diameter with buried flaps of approximately 50 percent chord and 50 percent blade span was tested on a helicopter whirl-test stand. The investigation covered ranges of collective flap deflection to increase static thrust, and cyclic flap deflection to obtain control forces and moments. The results of the test concurred with the analytical methods developed for predicting aerodynamic and aeroelastic characteristics of a propulsive-rotor. This feasibility test experimentally established the validity of the hypothesis, but at relatively low levels of power and speed. Consequently, the contract was amended (January 1957) to authorize a more sophisticated ground test stand evaluation. Obtaining a balance between the power-installed requirements for cruise and those for hovering is an important function of V/STOL design. Amongst the various V/STOL configurations, the tilt-wing presents a unique opportunity for obtaining the desired balance by virtue of its freedom to select a wing of nearly or actually optimum loading. If the vertical lift at zero forward speed is provided by slipstream turning the resultant force is less than the thrust of the propeller; that is, there is a turning loss and the loss must be made up with more thrust from the propeller. On the other hand, if the vertical lift is obtained by tilting the wing-propeller combination through a right-angle, wing stall problems in transition can become acute. From parametric studies, it appeared that a combination of the two principles should be adopted. In the K-16B, a Fowler flap is deflected 40 degrees to deflect the slipstream 20 degrees. Consequently, the wing need be tilted only enough to make up the remaining 70 degrees. Fuselage angle, both on the ground and in flight, can be a portion of this latter angle. The 20 degrees of slipstream turning can be accomplished with a minimum of turning loss. Because the wing flap deflects the slipstream, the wing attitude angle required to sustain the aircraft in equilibrium at a particular speed is lower than without flaps. The wing resultant angle-of-attack consequently is lower, which reduces transition stall problems. Another factor influencing the choice of tilt-wing and flap configuration is the longitudinal trim characteristics. The large flaps of a deflected slipstream vehicle cause a large nose-down pitching moment. The propeller normal force of a tilt-wing configuration results in large nose-up pitching moments. The K-16B cembines both to minimize the out-of-trim moments to be overcome by the controls. Finally, the flapped wing affords reasonable power-off stalling speeds in conventional airplane configuration. A twin-engine utility airplane in the 9000 pound class was blocked out. Turbine engines in the 1000-hp range being required, suitable rotor and drive systems were designed and fabricated. In addition, a half-span wing fitted with 40 percent Fowler flaps, nacelle, and cowling, designed to Specification MIL-A-8629 Class VU, was built. These components were installed on a test stand that was appropriately floated on loadcells to permit measurement of the six components of force and moment for the determination of controllability, thrust, and lift performance. Additional instrumentation permitted a strain survey of the blades and hub, and measurements of blade motions, blade/flap hinge moments, and control inputs. The program also evaluated the degree of slipstream deflection by the wing-flap, rotor/wing slipstream interference, wing straightening effect, and effect of ground proximity. Again results were in general accord with the hypothesis, although they did disclose areas, both in analysis and design, that required modification. These problems and their solutions are discussed in the "Test Article Development" section. During the closing stages of the test program, analysis of data indicated that either further experimental results would continue to agree with theory, or the required modifications to analytical techniques were known. With the successful conclusion of testing expected in the near future, the contract was again amended (June 1958) authorizing a flight research vehicle. #### FLIGHT RESEARCH AIRCRAFT The purpose of this aircraft, known as the K-16B, was to provide a vehicle that would assist the Burcau of Naval Weapons in the establishment of both flying qualities and structural specifications for the coming generations of V/STOL aircraft. To provide for a reasonably thorough assessment, a considerable degree of flexibility must be incorporated into the various systems. A structural flight envelope approaching that of operational aircraft must also be provided. Both objectives have been met in the K-16B. In the interest of economy, the Bureau furnished a surplus JRF-5 fuselage to be modified for V/STOL operation. Because this is an amphibious fuselage with known hull characteristics, an additional advantage accrued to the overall program in that a qualitative assessment of V/STOL open-ocean operation could be made. A description of the structure and systems, and a summary of the principle design dimensions will be found in Appendix B. The general arrangement is shown in Figure 1. The authorization to proceed with the K-16B also called for dynamic substantiation of the rotor and of the power-and-drive system. Normally, the analytical treatment is substantiated by separate bench stand testing of the components before they are brought together for systems dynamic substantiation. Considerable economies can be realized by moving immediately to a qualification test of the complete system without prior component testing. But this entails a calculated risk - if one component fails the failure may be catastrophic, and at the least will delay work on the entire system. However, in view of the limited funding, the endurance stand was designed to qualify both the components and the complete system at the same time. Subsequent to the authorization of the flight vehicle the decision was made to perform a full-scale wind tunnel evaluation. After functional tie-down testing, the airplane was shipped to NASA, Ames Research Center, for testing in the 40×80 foot wind tunnel. In the next section are briefly discussed the analyses and tests that evaluate the ability of the K-16B to safely perform within the prescribed flight envelope. An analysis of the full-scale wind tunnel data will be found in a later section. In the section "Test Article Development" are reviewed a number of problems that arose and their solutions, and problems that remain and their probable solutions. The first phase of the propulsive-rotor research was designed to correlate analytical predictions with tests of a feasibility model. A prototype 3-bladed rotor of 14-foot diameter with 50 percent chord and 50 percent bladespan buried flaps was tested on a helicopter rotor whirlest stand. This test set-up is shown in Figure 2. The investigation covered ranges of collective flap deflection to increase static thrust, and cyclic flap deflection to obtain control forces and moments. The results of the test, presented in KAC Report G-90(1), concurred with the preliminary estimates of aero-dynamic and aeroelastic characteristics of a propulsive-rotor. It was concluded: - the hover controllability of presentday helicopters represents a reasonable criterion for design of V/STOL control systems; - in terms of additional power and weight requirements, the most economical way of achieving this degree of control in propeller-driven V/STOL aircraft is by means of cyclic lift control of the propeller; - trailing-edge flaps on the propeller blades
provide a satisfactory degree of cyclic control; - steady, positive, trailing-edge flap deflections provide increased propeller maximum lift coefficients. This feasibility test stand experimentally established the validity of the concept at relatively low levels of power and speed. Consequently, the contract was amended to authorize a more sophisticated ground stand evaluation of the concept. This phase of the program was accomplished on a test stand floated on Baldwin-Hamilton Type U-1 loadcells, permitting the determination of lift, thrust, and side forces, and of pitching, yawing, and rolling moments. On this stand were mounted a half-span wing fitted with Fowler-type flaps, a nacelle, and one rotor and drive system. Figure 2 Feasibility Test Stand Structural components peculiar to a flight article were designed to the criteria for Class VU aircraft of Specification MIL-A-8629, that the test results might reflect the compromises normally encountered when designing an operational military aircraft. The test stand as described (Figure 3) permitted a performance assessment out of ground effect. To investigate the influence of ground proximity on performance, a plane was constructed to simulate the ground (Figure 4). The results of this testing were again in general accord with the developed procedures, (KAC Reports G-lll-l through -4) (2/5), although the program did disclose areas in the particular hardware, both in analysis and design, that required modification. They were: - variable inflow theory must be considered in the rotor analysis; - to increase flapping sensitivity requires the introduction of negative - lead-lag freedom is not a necessity; - e flap hinge moment must be reduced. During the closing stages of this testing it was apparent that procedure had been substantiated, so the contract was again amended to provide for a V/STOL flight research aircraft. A surplus JRF-5 to be modified to the V/STOL configuration was supplied by the Bureau. This vehicle was to furnish a platform that would permit the safe accomplishment of flight research within a meaningful envelope to assist in the establishment of realistic flying qualities specifications for V/STOL aircraft. To meet this requirement it obviously could not be a limited-envelope test-bed; there must be adequate engineering justification supported by ground test in areas of question. But funding limitations affected planning. Initial judgement indicated that the engineering justification could be substantiated by the following tests: - powered 1/8-scale wind-tunnel model; - wing proof-load; - controls proof-load; - mechanical instability and flutter; - dynamic component endurance; - e functional tie-down. Aerodynamic Research Test Stand without Groundboard Figure 4 Aerodynamic Research Test Stand with Groundboard Subsequently, the test program was expanded to include: - additional 1/8-scale model windtunnel tests; - blade flap and flap-retention fatigue test; - blade flap-control fatigue test; - simulator flight evaluation; - 1/8-scale wind-tunnel tests of blade flapping and damping in high-speed flight; - full-scale wind-tunnel test. #### AERODYNAMICS Aerodynamic analysis followed a normal pattern, the only deviation being the need to consider two flight regimes for the same airplane - airplane in fixed-wing, high-speed flight, and helicopter in low-speed flight. Analyses covered methods of analysis, airloads, and estimated flying qualities, and are reported in KAC Reports G-113-2(7); -4(9); -5(10); -7(12); and -31(36). Applicable reports were modified as results of testing became available. Estimating stability and controllability of the aircraft at all flight speeds was complicated by the unusual trimming and control devices available. The steady level flight of an aircraft requires a balance of forces in the vertical and horizontal directions. In any airplane this is brought about by a combination of propeller thrust and wing lift that balances the aircraft weight and drag. In the K-16B, because of the high thrust available, this balance can be achieved at any flight speed. As the speed is reduced below the flaps-down stalling speed, more of the lifting force must come from a component of the rotor thrust, and the attitude of the wing-propeller combination in space must move toward the vertical. If the wing and fuselage were fixed with respect to each other, rather inconvenient attitudes would result. The pilot of the K-16B can, however, tilt the fuselage down with respect to the wing as speed is reduced. Fuselage attitude, therefore, can be considered a trimming device. In addition, the regular aerodynamic control surfaces become inadequate at these low speeds, and full control is obtained by the cyclic and differential-collective control of the rotor's articulated blades. The detail design specification for the 1/8-scale wind-tunnel model is found in KAC Report G-113-1(6). Each model rotor was driven by a 30-hp electric motor through a 2.17:1 reduction gearbox, and run at an rpm that was varied from 8000 to 12,000 rpm. To match $T_{\mathbf{c}}^{\prime\prime}$ with available power and speed, the rotors were four-bladed but otherwise scaled dimensionally. The blades did not have trailing-edge flaps but did have flapping hinges. A strain-gage balance within each nacelle measured rotor thrust, torque, normal force, and pitching moment about the hub. The tests were conducted in the DTMB 3 x 10 foot Atmospheric Wind Tunnel No. 1. Figure 5 shows the model during test operations. These tests were completed by February 1960 and are reported in DTMB Aero Report 998(47), and KAC Report G-113-7 Appendix A(12). Aerodynamic predictions of suitable stability were generally substantiated, except for directional instability in the airplane "clean" configuration. Additional area added to the vertical fin corrected this. As a result of these tests however, the pessibility of stall was indicated on the model under conditions simulating level flight at speeds between 20 and 60 knots (Ibid). "Fallout" from NASA research then in progress also indicated that transition stall might be more serious than originally believed. Hence, the model was retested with several configuration changes to assess their effect on transition stall. The leading-edge was modified in a manner similar to that shown in NACA TN2228, Figure 2(48). A leading-edge slat, a modification of that reported in NACA TR732(49), was also tested. Further, a center section slat was empirically designed. All the configuration changes resulted in improvement in the model aerodynamic characteristics. In view of the good results obtained with the leading-edge modification (a glide-path angle of 10 degrees could be maintained throughout the transition), it was decided to use it during the upcoming full-scale wind-tunnel tests. These model tests were completed during November 1961, and are reported in KAC Report G-113-31(36). At about this time a simulator flying qualities pilot evaluation was conducted at North American Aviation, Columbus Division, on their visual analog VTOL simulator. Figure 5 1/8-Scale Wind Tunnel Model The estimated flying qualities were evaluated by pilots from BuWeps, Kaman, NASA, and NAA. The dynamic stability and control characteristics in hovering flight were found to be flyable but with sufficient unpleasant characteristics to hamper satisfactory sustained hovering operation. The results of the mid-transition and conventional flight evaluation showed the expected improvement of flying qualities with speed. The flight characteristics at 100 knots were generally rated satisfactory for normal operation, but with slightly unpleasant characteristics. This simulation program is reported in NAA Report NA60H-672(50), NATC Patuxent Report No. 1-Final Report (51), and KAC Report G-113-7 Appendix C(12). As a result of the hovering evaluation, it was recommended that a stability augmentation system be installed. Upon completion of the aircraft it underwent functional tie-down testing, as shown in Figure 6. All the pilets who participated remarked on the smoothness of operation. Several times the landing gear shock struts were fully extended, the tires doughnut-shaped, and the springlines taut. But, tethered flight was prohibited prior to full-scale tunnel testing. Following these tests, the K-16B was shipped to NASA, Ames Research Center (ARC), for full-scale tunnel testing. Before installation in the tunnel all systems were checked out on a static thrust stand where hover data in the areas of rotor thrust and control effectiveness were also taken. The wind tunnel operation was concerned with rotor thrust, control effectiveness, wing stall in transition, and blade flapping and damping in forward flight. The installations of the aircraft both on the thrust stand and in the tunnel are shown in Figures 7 and 8. The analysis of the data indicates that the methods developed for the analytical treatment of propulsive rotor performance are valid - that the deficiency in performance disclosed by the data can be directly attributed to non-optimum test hardware. Wing stall buffet in transition may limit the effectiveness of the K-16B flight research program. No problems arose with blade flapping and damping in forward flight - test results agreed very well with analytical predictions that showed the rotor to be well damped with very little flapping. At low flight speeds the rotor operates the same as a helicopter rotor with offset hinge. At cruising speed Figure 6 Tie-down Operation Figure 7 Thrust Stand Installation Figure 8 Full-Scale Wind Tunnel Installation the cyclic flap control is phased out and blade motion is defined solely by the airplane attitude and motion. A theory was derived describing the force and motion characteristics of a flapping rotor operating in high-speed conditions, and model tests carried out to verify its qualitative accuracy. The rotor derivatives with respect to the
perturbation velocities are obtained from methods similar to those used in helicopter analyses. But, a further complication is introduced because the forces and moments generated by the rotor-wing combination are with respect to the wing axes system; thus, a resolution is necessary to relate the forces and moments into the stability axes system. The rotor derivatives are complex due to the implicit relationships that exist between the rotor variables. This system is necessarily further complicated by the incorporation of a factor to account for a variable inflow, and by the increase in rotor natural frequency caused by the offset hinge. All this requires that existing theory be modified to include a cyclic variation of inflow and lift coefficient which occurs for a rotor operating at other than its natural frequency. A description of these rotor derivatives will be found in KAC Report G-113-7(12). A negative damping contribution is indicated by this method, whereas a positive damping is calculated using the simplified helicopter methods. The principle difference is the negative damping contributed by the rotor H-force at a speed condition. However, a flapping hinge offset will always result in a relatively smaller negative contribution for the offset always contributes a positive damping term (NACA TN3492)(52). This damping term is a result of the hub moment due to pitching velocity. At cruising speeds, the positive damping due to the hub moment is balanced by the negative damping due to the rotor H-force. At high flight-speeds the forces and moments produced by a rotor are essentially a function of blade geometry, mass distribution, motion, and the position and motion of the rotor shaft. Once these parameters are known, the forces and moments produced by the rotor become a straightforward integration operation. All the terms except the blade motion are readily available; hence, the basic theoretical problem is the prediction of the blade motion. Because of these considerations the K-16B 1/8-scale model rotor and instrumentation was borrowed from DTMB to conduct company-funded tunnel tests. In the end, however, we used only the instrumentation, and built a model rotor that was inertially and aerodynamically similar to a full-scale rotor. Test conditions were set in excess of K-16B conditions, and were the equivalent of a full-scale 2.2g symmetrical pullout at 390 knots. The full-scale pitch rate would be 4.3 degrees/second. The theory predicted that for these conditions the longitudinal and lateral flapping should be zero. The longitudinal flapping due to a steady angle-of-attack of 7.4 degrees should be 3.43 degrees, and the lateral flapping 5.54 degrees. However, the gyroscopic moments acting on the blade due to the pitching rate produce strong negative flapping and numerically cancel the flapping due to angle-of-attack. Review of this preliminary test data indicates agreement with theoretical predictions - longitudinal and lateral flapping were zero. #### DYNAMICS Dynamic structural design was approached by corventional mechanical stability and flutter analyses, substantiated by vibration testing to confirm calculated frequencies and mode shapes. While precise correlation between calculated and test frequencies was not obtained, analysis proved in every case to be conservative. A vibration survey was performed on the rotor/wing combination available from the aerodynamic research test stand. In addition, an analysis was made of the mechanical instability characteristics of the airplane configuration both in flight and on the ground (KAC Report G-113-10)(15). It was determined that the ranges of mechanical instability associated with the wing modes were the most critical. To insure freedom from instability in these modes for both ground and flight operation, it was necessary to install a centering spring in the lag freedom of the blades so that the static in-plane natural frequency of the blades was 50 r/s. With this blade frequency the remaining modes were not critical. The flutter analysis followed conventional practice, and indicated that no flutter problem exists in the airplane (KAC Report G-113-6(11). Upon completion of the airframe a mechanical instability and flutter survey was run. This test setup is shown in Figure 9. Structures of equivalent mass and inertia replaced the engines, transmission, and rotors. Excitation was effected by rotating eccentric weights in the plane of the enter; excitation force levels were adjusted by changing the eccentric masses. A sweep of the frequency range from approximately 80 rpm to 1000 rpm was made, both wing down and wing up, at discrete percentages of airborne weight. It was found that rotor and structural damping were more than adequate to preclude divergent oscillations in those regions of resonance that appear in the eperating range. These tests are reported in KAC Reports G-113-27 and -30 32, 35). In KAC Report G-113-28(33) is presented an analysis to determine the torsional natural frequency of the drive system. The purpose of the analysis was to insure there were no natural frequencies near rotor (3 per rotor rev) or drive system (2 per engine rev) excitations to cause high torsional stresses in the drive system. The 3-per-rotor-rev excitation is due to the three-bladed rotor; the 2-per-engine-rev to the drive shaft universal joints. It was found that the natural frequencies obtained are out of the range of the 3-per-rev excitation, but not of the 2-per-rev when the original aluminum drive shafting is used. Replacing the aluminum shaft with a dimensionally similar steel shaft brings the natural frequency out of the critical range. The propeller-nacelle-wing combination was also investigated for whirl flutter for various ratios of forward velocity over tip-speed (KAC Report G-113-41) (40). The analysis was divided into three stages of increasing complexity: (1) inertial system with rigid hub (without blade flapping or aerodynamic loads); (2) inertial system with articulated hub in flapping; (3) complete system which adds the aerodynamic forces to the inertial system of (2). approach has the advantage of allowing a closer check of the equations of motion, and permitting the observation of the effects of the addition of more complex terms in the system. Further, the effect of the blade flapping degree of freedom on the gyroscopic coupling in the inertial system may also be noted. Results of the analysis indicated the absence of this obenomenon over the range of ratios that had to be considered. Figure 9 Vibration and Flutter Test #### STRESS ANALYSIS #### Static Structure Structural problems encountered during design were few in number in view of the conventional design approach; pivotally mounting the wing to the fuselage was the main exception. Again, conventional structural elements were used, so few problems from a stress analysis point of view were encountered. The analytical treatment of structure followed the normal pattern of development of flight, ground, and water loads (KAC Reports G-113-14, -15, -16)(19/21), and fuselage/wing attachment loads (KAC Report G-113-22(27). Various stress analyses of such as the wing, nacelle, fuselage, tail, alighting gear, transmission mount (KAC Reports G-113-19(24); -23(28); -25(30); -26(31); -18(23); and -17(22), respectively) were also published. The wing was proof-load tested in two conditions adjudged critical; these tests are reported in KAC Reports G-113-11 and -12(16/17). In the event of a deficiency in the JRF-5, the extent of the modification or the limits of operating restrictions were to be reported to the Bureau for decision whether the modification would be made or the operating restriction accepted. The aircraft was designed structurally to Specifications MIL-A-8629 Class VU, and MIL-S-8698, with additional requirements written into an addendum to attempt to fill the gaps in these helicopter and fixed-wing specifications. The wing was proof-load tested in two conditions determined to be most critical - wing bending in 3-point landing, and wing torsion in symmetrical landing approach. Loads were applied through whiffle-trees by load-trays and hydraulic cylinders. The test setup can be seen in Figure 10. In both tests proof-load was reached with no apparent structural inadequacies. As load was being removed after the last test, a malfunction of a test actuator resulted in an inadvertent over-load and local yielding of the wing. For the forthcoming full-scale tunnel operation, structural integrity was restored by a temporary repair; a suitable permanent repair, adequate for safe flight, has been designed (KAC Report G-113-12)(17). The fuselage stress analysis showed the structure to be adequate for the design loads except for two landing conditions - a drift landing and a one-wheel landing. Both conditions result in negative margins on the main landing Figure 10 Wing Proof-load Tests gear backup structure. A modification that will eliminate the negative margins is presented in KAC Report G-113-25 Appendix 1 (30). The alighting gear stress analysis disclosed that the JRF-5 is compatible with the K-16B criteria except for a negative margin in the upper drag link as a result of a drift landing condition. A method of eliminating this negative margin is presented in KAC Report G-113-18 Appendix A (23). The empennage analysis (KAC Report G-113-26)(31) indicated that the elevator, rudder, and rudder tab were more than adequate for the design loads. Because of the need to increase the vertical fin area by adding a tip cap to improve directional stability, stiffeners had to be added to the existing spar to increase bending strength. It was also necessary to add doublers to the horizontal stabilizer spar-cap to accommodate the higher required flutter speed of the K-16B. The stress analyses of both the nacelle and the transmission mount show these structures to be adequate for the critical air, ground, and water
load conditions (KAC Reports G-113-23, and -17 (28,22) respectively. # Dynamic Systems The dynamic systems are defined as the airframe control system to the rotor azimuth and to the surface controls; the rotor including blade flap controls from and including the azimuth; and the drive system. Stress analyses of these systems were supported by controls proof-load test, blade-flap control system fatigue test, blade-flap retention fatigue test, and power-and-drive system endurance test. The aircraft flight control system consists of conventional components such as pushrods, cranks, quadrants, and cables. Because some of the portions were superimposed on existing JRF-5 systems, the JRF-5 design limit loads were used. The stress analysis indicates that all components are structurally acceptable (KAC Report G-113-9)(14). Upon completion of the controls installation, a system proof-load test was performed. All control systems - airplane mode, helicopter mode, and engine controls - to the azimuth and to the control surfaces were tested. Appropriate loading beams were installed at the cockpit controls, and surface locks installed as required. Loads were applied by load trays or calibrated hydraulic cylinders. All tests were made with no apparent yielding of the systems or system support structure. Controls excursions were performed with no interference in the systems (KAC Report G-113-13)(18). Although the stress analysis of the propulsiverotor (KAC Report G-113-24)(29) disclosed no negative margins, two failures in the flap retention during endurance stand operation caused authorization of fatigue testing of the retention system. This was expanded to include fatigue testing of the blade-flap control system. The retention fatigue test (KAC Report G-113-35) (39) led to significant improvement in the life of both the flap and its retention. The configuration eyeled in the last test was duplicated for use in the tunnel program at ARC, where it was used with complete confidence. This fatigue test operation is shown in Figure 11. The level of operation for the controls fatigue test (KAC Report G-113-33)(37) was established at the estimated maximum continuous load level. Although the system demonstrated adequate life at this level, during actual operation at continuous higher cyclic input levels, operating lives of bearings were unacceptably short. The fatigue setup is shown in Figure 12. The two rotors are driven through reduction gear-boxes by YT58-GE6 engines in wing-mounted nacelles. Power take-offs from the main reduction gearboxes are interconnected through the wing to permit either engine to drive both rotors in the event of a single engine failure. The structural integrity of all details of the drive system was substantiated using approved methods of stress analysis (KAC Report G-113-21)(26). Though some areas showed higher levels of pitting and bending stresses than could be accepted for unlimited life, they are within the working limits of the experimental nature of the program. A power-and-drive endurance bench stand, shown in Figure 13, was used to qualify the rotor and drive system (KAC Report G-113-34)(38). Because of the similarity of the left-hand and right-hand drive systems, the endurance stand duplicated only the left-hand installation of engine, drive system, and rotor. In addition, the cross-shaft installation to and including the accessory-drive gearbox at the aircraft centerline was included. This program was delayed by: (1) a drive shaft failure, and (2) two failures in the blade-flap retention. Figure 11 Blade-flap Fatigue Test Figure 13 Power and Drive Endurance Bench Stand During this discussion of analyses and tests a number of problems were mentioned. These problems and their actual or probable solutions are touched on in the "Test Article Development" section. # TEST ARTICLE _____DEVELOPMENT Preceding sections presented a review of the various analyses and tests that evaluated the V/STOL capabilities of the K-16B. A number of difficulties were mentioned. This section will touch problems actually solved, and remaining problems with their probable solutions. It is divided into major subsystems of propulsive-rotor, air-frame, and power-and-drive. #### PROPULSIVE ROTOR It is possible to accurately predict propulsiverotor performance - final analysis and data show good correlation. The rotor that was tested developed thrust somewhat short of the original prediction. This was not entirely unexpected. The program did not permit incorporating product improvements upon the availability of additional criteria resulting from previous testing and refinements in analytical techniques. The program was designed as a research effort, and in such a role the rotor configuration that was tested has proved to be a useful tool. # Hover Characteristics In the design of helicopter rotors the assumption of uniform inflow is commonly used to determine cyclic effectiveness. This approach had been applied to the propulsiverotor. Data from the Phase II research test stand indicated that a more rigorous variable inflow theory must be applied. Comparison of test results with calculations based on the latter theory disclosed excellent agreement. Control in hover (and transition) is obtained by blade-flap cyclic deflection, in the proper phase, to rotate the tip-path plane and consequently the direction of thrust. This tip-path rotation plus the blade centrifugal forces acting on offset flapping hinges, produces moments to attain precision helicopter-type control. Cyclic sensitivity, which is the amount of flapping for a particular cyclic flap deflection, is a function of the flapping hinge offset, pitch-flapping coupling, the first mass moment, and the thrust coefficient. A particular control moment can be generated by proper choice of these characteristics. When the cyclic sensitivity analysis is compared with the static thrust stand test points, agreement is good. When the sensitivity is used to determine total control moment, agreement again is good. Because directional control is a function of cyclic sensitivity, it too will be as predicted. Our analysis carried the measured components of the control moment to a point that separates the aerodynamic results from the mechanical system. Such a common base for comparison is the wing axis system before control compensation is introduced. When this is done, the directional control in the wing axis system is found to be just as predicted by the final methods of analysis. The results of the tests at NASA, Ames Research Center (ARC), were affected by an off-optimum control compensation in the mechanical system (NASA TN D-2538) (53), designed to earlier estimates of control characteristics. Pitching moment test data (Ibid), when shown as a function of longitudinal flapping, is in gccd agreement with analysis. If plotted as a function of longitudinal stick position, agreement again is good. However, it was less than the predicted moment (KAC Report G-113-4)(12). The available control was limited to 0.6 of the design value because of an interference in a swashplate. In addition, full hovering thrust was not produced during the tests, and cyclic sensitivity is a function of thrust coefficient. ### Transition Performance In transition, aircraft operation is determined in part by the thrust of the rotor, and of control moments and forces by the rotor about and along the three axes. One purpose of the blade-flap is to improve the static thrust capability without penalizing the high-speed forward flight efficiency which a highly cambered or wider blade would do - its purpose is not to improve the rotorblade efficiency throughout the speed range by continued flap deflection. The concept allows the designer to select a blade profile and activity factor compatible with the high-speed propeller requirements, but by collective flap deflection attain the higher lift coefficients required for hover performance. For the high-speed configuration the flaps are fully retracted, returning the blade to the thin profile needed for efficient propeller performance. The collective flap is reduced as the thrust decreases, and when halfway through the transition the flaps are fully retracted. The transition tests in the wind tunnel (NASA TN D-2538) (53) were run with a constant 13 degrees of blade-flap collective deflection, so poorer propeller efficiencies would be expected at the higher speeds tested. The appropriate configuration for the ARC test point at 150 knots is collective flap fully retracted and blade pitch at 34 degrees. The run at this velocity was made in the transition configuration and merely established an anchor point for the curve of propulsive-rotor performance in transition. The comments concerning control in the hovering mode also apply in transition. The cyclic sensitivity does drop off however, principally because of the reduction in thrust coefficient with speed. At the same time the phasing gradually shifts as a function of the advance ratio in the transition - decreasing as the advance ratio increases, then increasing as the advance ratio decreases again. During this time the tail is becoming effective. Although the cyclic sensitivity was greater than anticipated, because of wing stall the untrimmed pitching moment was so large it severely curtailed the control available for maneuvers. #### Performance Improvement To improve the performance of the rotor, a number of configuration changes (blade flap extent, solidity, tip speed, twist, airfoil section) have been considered. Two possible configurations were reviewed. The first is essentially the same as the present rotor in over-all dimensions. The second has an increased diameter, chord, and flap span. Both take advantage of an increase in rotational speed, and a clean-up of blade tip design. (The present blade-flap control linkage results in higher aerodynamic drag at the tip. It is not possible to precisely calculate the power
loss due to this added drag, but it is estimated at 3 to 4 percent.) Table I describes the basic (existing) configuration and the two revised configurations. Table I Rotor Particulars | | Basic | Blade A | Blade B | |------------------------|---------------------|------------|------------| | Diameter | 15 ' 2" | 15'2" | 15'10" | | Blade Chord | 3.8" | 18" | 20" | | Flap Extent, r/R | .54 to .98 | .54 to .98 | .35 to .98 | | Tip Speed, max | 575 fps | 635 fps | 664 fps | | Airfoil of Outboard | 163 ⁵ 09 | - | - | | 50% of Blade | 163009 | 16509 | 16509 | | Adminate Donates Co. 1 | | | (modified) | | Airfoil Design Camber | . 35 | . 5 | . 5 | | Tip Region | Dirty | Clean | Clean | The hover performance map for the basic blade is shown in Figure 14; for Blade A in Figure 15; and for Blade B in Figure 16. These maps were used to determine the hover capabilities of the new configurations, shown in Figure 17. The effect on high-speed performance is shown in Figure 18. It will be noted that by virtue of the blade flap, static thrust has been optimized without penalty in cruising propulsive efficiency. It can be concluded that the degree of rotor modification represented by Blade A, when powered by a T58-GE8, will provide sufficient margin of static thrust to assure adequate vertical flight performance of the K-16B at any feasible gross weight. The concept of integrated design lift coefficient for estimating propeller performance is based on the assumption that the propeller operates at the design angle of attack, oC 1, at each station along the blade. For the normal pro- peller, designed for maximum efficiency in cruise, the concept is valid because the radial variation in ideal angle of attack can be made coincident with the twist distribution for cruise operation. In this case static thrust is of secondary importance. For VTOL aircraft, static thrust is of primary importance. Efficient high static thrust requires that the camber be high and the twist in the order of -12 degrees and linear. A blade designed with these characteristics will have poor efficiency at the low thrust coefficients required for cruise. The propulative-rotor, because its blades are of variable camber, reconciles the two requirements. Figure 19 compares the static figures-of-merit for two conditions of the improved Blade A. In the one condition, $\sqrt{\sigma} = 0$ degrees, or the equivalent of an invariant propeller. In the other condition, $O_0 = 5$ degrees. In the irst condition, note that with basic camber alone the cannot generate the required thrust at the design of 10,000 pounds. However, increasing the camber by eas of flap deflection, the 10,000 pounds of thrust produced at a reasonable figure-of-merit. By retraining the flap a propeller cruise efficiency of 0.85 is attained. A conventional propeller designed for this same cruise efficiency (0.85) would be equivalent to propulsive Blade "A" with zero collective flap Blade "A" with 5 degree collective flap Figure 19 Propulsive Rotor Performance rotor "A" with flap retracted, in terms of geometry, twist, and camber. Hence it would have the same low figure-of-merit in hover, and therefore would be unacceptable. Were the propeller designed for a higher cruise efficiency, there would be a further degradation in hover performance. To meet the required hovering performance, the blade chord, number of blades, or amount of camber would have to be increased, resulting in poorer propulsive efficiency in cruise. To develop 10,000 pounds of thrust with the present test rotor requires a collective flap deflection of 13 degrees for a $C_{\rm T}/\sigma^{-}$ of 0.185, resulting in a figure-of-merit of 0.62. By increasing the tip speed of Blade A from 595 to 635 fps the $C_{\rm T}/\sigma^{-}$ required for 10,000 pounds of thrust is reduced to 0.152, which requires only 5 degrees of collective flap for a figure-of-merit of 0.72. Indeed, 11,000 pounds of thrust can be developed at a $C_{\rm T}/\odot$ of 0.166 with 6 degrees of flap and a figure-of-merit of 0.71. This configuration change demonstrates the performance that is possible with the K-16D rotor. Although the analysis concentrated on improvement of hover performance, the concept is not that narrowly defined. It lends itself to performance flexibility in systems trade-off studies. Consider the following plot. This is a hover per- Cruising Efficiency, 7 formance map crossplotted to cruise efficiency. It is based on estimates of performance of one airplane, and varies propeller blade camber. The propulsive-rotor blade-flaps are appropriately stowed in cruise, of course Note the curve for an invariant-camber propeller, $\sqrt{0} \approx 0^{\circ}$. When designed for hover, its figure-of-merit is in excess of 0.7 but its cruise efficiency is low. Now consider the other extreme of the curve. Cruise efficiency is high but hover efficiency is very low. The curve for collec- tive flap of ludegrees ($\sqrt{0}$ =100) is indicative of the per- formance improvement with variable camber blades. Note that at the same maximum cruise efficiency of the fixed-camber blade there is just a modest decrease in hever figure-of-merit. It can also be seen that a range of trade-offs can be made between hover efficiency and cruise efficiency. And, when a reduced efficiency, either hover or cruise, is acceptable, it is not improbable that there may be a cross-over point. Then there may be no performance advantage of the propulsive-rotor, but the hover control advantage will continue to exist. The flexibility of the concept makes it possible to configure a propulsion unit to be the best compromise for a system mission profile, whether it be long range and short hover time, short range with long hover time, or any mission in between. Unlike the relative trade-oif inflexibility of an invariant-camber propeller, the propulsive-rotor allows a systems analysis to balance cruise efficiency against hover efficiency. #### Component Hardware The rotor hub had been designed as a fully articulated system. Analyses performed in an Air Force study (Egerton and Giansante - 54) indicated a substantial potential weight savings of a semi-rigid rotor as compared to a fully articulated rotor. Several test runs with le d-lag freedom locked out were made on the Phase II test stand. A marked improvement in the smoothness of operation was noted. Though the stress levels recorded during this running were within the limits of test stand operation, the stress levels that would be encountered in maneuvering flight would call for a complete redesign of the hub. Instead, a unique lead-lag restraint was designed. It provides the in-plane freedom of blade motion to relieve blade and hub streezes of the original design, yet the natural frequency of the complete system is so tuned that mechanical instability is avoided. Obviously, the weight saving of a complete redesign could not be obtained; however, with the primary objective that of obtaining research data, the weight penalty could be tolerated. Blade-flap retention is provided by a tension-torsion cable mechanically secured at the root of the blade and attached to the flap spar. In the original design the cable was attached to the spar by a threaded connection to a fitting bonded to the spar. A connection of this type was more amenable to fabrication, assembly, and bandling. During power-and-drive bench stand operations, a failure occurred in a thread relief of the fitting bonded to the flap. Metallurgical inspection revealed a fatigue failure resulting from flap bending loads. The cable end fitting was changed to a ball-and-socket arrangement that becomes permanently bonded into the flap through a phenolic block. A second retention failure occurred, this time in the bond between the phenolic block and the spar structure. Inspection disclosed an incomplete bond between the phenolic block and the plywood leading edge. The designed area of the bond was more than sufficient to support the loads - this was substantiated by pull-tests of the two remaining flaps. However, to reduce the sensitivity to quality variations - a factor in this failure - the joint layup was redesigned. Subsequent flaps have given no evidence of difficulty. Further significant improvement in flap reliability developed as a result of parallel fatigue testing (KAC Report G-113-35)(40). In all, seven fatigue tests of the flap and retention were performed, permitting establishment of reasonable S-T curves for wind tunnel and flight operation. Although the flap configuration used during the ARC tests had adequate fatigue life, it is suspected that structural deformation of the flaps, which were rather flexible, may have affected rotor performance. By applying the construction techniques used in the aluminum-spar, honeycomb-stiffened UH-2 helicopter servo-flap to the K-15B flap a decided improvement in flap stiffness can be attained. The only essential difference from the UH-2 flap structure would be a fiberglass skin, necessary to allow for the relatively sharp twist of the K-16B flap. Dynamic analysis of this flap also indicates that fatigue strength will be far greater than that of the present flap. The economics of the program dictated austerity in all areas. System trade-off studies resulted in the present blade-flap control linkage, which is a push-pull system consisting of links, a long spanwise rod, and an offset crank driving a flap horn by an external chordwise rod. The tradeoff studies reviewed the impact of dual hydraulic actuators versus single hydraulic actuators to operate the rotor swash-If a suitable mechanical system is available in the event of a hydraulic failure, then the expense of a dual system can be avoided. In this case, a hydraulic failure will place the rotor control loads on the pilot's stick; these must be within the pilot's capabilities. The control system geometry that was selected permitted including a mass balance that introduces a cyclic centrifugal
force in opposition to the aerodynamic force produced by cyclic flap deflection, resulting in emergency loads within the pilot's capability. This allowed the use of a single actuator. Operation disclosed high pressure-velocity (P-V) loads on many of the bearings, and serious lubrication problems at the blade tip because of the high centrifugal forces on the components. These problems are particularly manifest at sustained higher levels of cyclic input, such as would be expected during wind tunnel operation. Belleville springs were used in the tuned lead-lag system of the rotor. As a result of several fatigue failures, a spring development program was pursued. The end requirements compelled a change of material, control of the grain orientation of the metal, and improved fabrication of the springs. Modified springs were in the airplane during testing at ARC. No evidence of malfunctioning appeared. #### Component Improvement The K16 rotor concept has been damned by faint praise because of these problems. Theoretically, the concept is considered a unique and promising solution to the control and static thrust problems of propeller-driven V/STOL aircraft. Practically, it has been denigrated because of the difficulties we experienced with research hardware. This judgement does not consider the state-of-the-art advances in bearing and structure technologies in the ten years since the propulsive-rotor was first designed. As a result of the emphasis the Military has placed on the contribution of relubrication of rotor and control system oscillating bearings to the maintenance bur- den, and of the demands of the space sciences, major advances have been made in the development of self-lubricating bearings and of elastic hinges; specifically, the KACarb bearing and the elastomeric bearing. kACarb bearings have a dry, solid, permanently-lubricated bearing surface that is designed for high-load, high-velocity oscillating or rotating conditions. They have a consistent and low coefficient of friction, and P-V capactities that are a minimum of four times greater than the best quality aircraft bearings heretofore available. They are also unique in that they can operate for short periods at excessive P-V loadings with no damage to the bearing. In one application, they operated for a limited time at a P-V loading in excess of 900,000 - more than ten times the design limit - with no damage to the bearing. The elastomeric bearing is constructed of alternate layers of metal and elastomer. The applied load is essentially normal to the lamination orientation; the functional displacement is parallel to the laminations. Lamina thickness is small for the elastomer to operate in the viscoelastic range, and at the same time, support appreciable compressive stress without extrusion at the edge boundary. Both types of bearings were selected by Kaman for the blade articulation of a rotor re-entry vehicle wind tunnel model for ARC (Contract NAS 2 - 2107). The model, shown in the figure, is a four-foot diameter, semi-articulated rotor complete with both cyclic and collective pitch. The elastomeric pitch bearings are but 1-3/8 inch in diameter. The flapping bearings are KACarb bearings. The application involves operating frequencies in excess of 100 cps - well beyond the state of the art for normal oscillating bearings - operating rpm of 6300, and a design load in excess of 10,000 pounds. Recent operation was at M = 3.5 in gliding flight with cyclic and collective input. After 70 hours, the bearings were inspected - and reinstalled in the model. In the original propulsive-rotor, the flap control system had the most critically loaded bearings operating at a frequency of about 12 cps, operating rpm of 725, and a design load of 1200 pounds. A damaging factor was the loss of lubricant because of the CF environment. (KACarb and elastomeric bearings require no lubrication.) Configuration studies have evolved a new system geometry of considerable promise. This is made possible by separating into .hree systems the functions of supporting the end shear load on the flap, the centrifugal retention load of the flap, and the hinge moment required to drive the flap. The entire control system is removed from the high CF environment at the blade tip and is operated inboard where the loads are considerably lower. Component fatigue lives are greatly improved, and the new system will be stiffer than the original system by an order of magnitude. (Control system flexibility was a problem during testing.) Insufficient control bearing failure rate data are available to run a quantitative reliability analysis, but a qualitative analysis of the new system with KACarb bearings shows a reliability improvement approaching two orders of magnitude. Removal of the control cranks, external actuating rod, and llap horn at the tip results in an aerodynamically efficient airfoil in the high-velocity tip area. Hub configuration studies have led to an integrated rotor-and-hub assembly. The physical characteristics of a propulsive-rotor blade are such that in-plane bending loads can be easily accommodated by the blade, permitting elimination of lead-lag bearings. A swashplate for flap control, and an actuator for blade pitch centrol, are integral with the hub assembly. Full advantage is taken of the characteristics of KACarb and elastomeric bearings. The case would bolt to solid structure, and because bending loads are not taken in a propeller shaft, a light quill shaft can drive the rotor. By integrating the blades, hub, and flap controls into a total system, the propulsive-rotor is removed from the specialty design field characteristic of helicopter rotor systems. It can be applied as a seb-system to any propeller-driven V/STOL airplane. #### AIRPRAME During the later stages of the research test stand the Model K-16B aircraft was authorized for the purpose of assisting the Bureau in the establishment of both flying qualities and structural specifications for the coming generations of V/STOL aircraft. #### Performance One phase of the program required a wind tunnel stability investigation using a powered 1/8-scale model. Aerodynamic predictions of suitable stability were generally substantiated except for directional instability with the wing down, wing flaps retracted, and rotors on. It was determined that: - the basic very high wing configuration contributed large side-wash characteristics that kept the vertical tail angle of attack low in the low yaw range. - the rotors contributed a large destabilizing yawing moment variation; - the dynamic pressure at the tail was not appreciably reduced. Strain-gage balance data of the propeller side force indicated that the model propeller contributed about twice the destabilizing yawing moment coefficient that the full-scale rotor was estimated to do. The model configuration was made stable using either a combination of end-plates and 20-degrees of dihedral of the horizontal tail, or by additional area to the upper portion of the vertical tail. Of the two, the latter was chosen. When the aircraft configuration was initially established, a trade-off was indicated between simplicity of wing structure and wing stall in transition. It was reasoned that though there would be transition stall, because of the low "q's" the stall would be of relatively little significance. So, design effort was concentrated on deriving the simplest and lightest wing structure for a rather awkward structural situation typical of tilt-wing types. There was no surprise at the indication of transition stall in the model tests, but results from NASA research and the V-76 program seemed to indicate that the stall was a more serious problem than we had previously believed. As a consequence, additional 1/8-scale model testing was programmed. A number of the changes investigated included a drooped leading edge, leading edge slats, and an increase in flap chord. All the changes resulted in improvements in the model's characteristics; the best improvement was with the leading edge slats. However, the improvement with the drooped leading edge was also significant. Because the latter was the simplest change and could be made as a removable glove, it was chosen as the modification to be tried during the full-scale wind tunnel tests. Full-scale tunnel testing showed that at conditions in which the K-16B was balanced, the wing was stalled. With the plain leading edge, stall was indicated between 25 and 70 knots. Contrary to expectations, the improvements anticipated with the modified leading edge did not materialize. However, even with the wing stalled, in the slipstream the wing tilt-angle required to balance the aircraft in a level flight transition is satisfactorily predicted. A brief wind tunnel investigation was made at ARC with the drooped leading edge over the wing outboard of the center section, and a leading edge slat over the center section. This slat, just long enough to cover the center section, was one that ARC had used in another program. The slat helped the center section, but then stall would occur between the slat and the propeller slipstream and spread spanwise. As a result, the drooped leading edge had little beneficial effect. No investigation was made using stall fences to halt the propagation. The horizontal tail was also stalled throughout most of the transition, probably as a result of being in the turbulent wake of the wing. The limited tests with the center section slat produced a considerable improvement in the flow over the tail. But there is a rather large variation in downwash angle over the speed range, causing the tail to produce undesirable nose-up pitching mements during the latter part of the transition. It appears that a variable incidence tail is called for to correct the moments. An analysis in the following section (Full-Scale Wind Tunnel Test) shows slipstream stall to be eliminated and center section stall to be minimized by using
leading edge slats. The elimination of stall will improve the flow over the tail, making it more effective in assisting control of the airplane. The demands made of the propulsive-rotor for K-16B hover capability are supplemented by deflection of the slip-stream with a minimum loss through an angle sufficient to make the resultant force vertical. Initial tests of wing lift effectiveness were made on the Phase II bench stand. They indicated a turning angle of 21.8 degrees. Later, 1/8-scale tests indicated a static thrust turning effectiveness of 20 degrees. The drag data from the ARC tests were so scattered that any angle from 4 degrees to 22 degrees could be obtained. It was possible, though, by working backward from the thrust data and keeping reasonable drag values, to estimate values of 16 degrees and 95 per cent for the turning angle and efficiency, respectively. The analytical procedures, therefore, are believed useful for preliminary prediction of turning angles and efficiencies. This subject is treated in detail in the correlation of the full-scale test data. The effectiveness of the K-16B wing-flap combination can be further improved by increasing the flap chord. Future designs will probably include larger flap span, narrower nacelles, and possibly double-slotted flaps to further improve slipstream turning angle. ## Performance Improvement The effect of stall on handling qualities is most critical for the approach conditions because the approach will be a low-speed transition condition; the airplane will be in the low-speed condition for appreciable lengths of time; wing stalling makes the flying qualities the worst in this condition. In addition, the effect of stall on the power required is of importance in relation to minimum engine-out speed or minimum approach speed. The tendency of flaps to reduce stall in transition is primarily a result of the flaps turning the propeller slipstream through a substantial angle, thereby reducing the angle of attack of the wing-propeller combination and consequently the wing angle of attack. The increase by the flap of the basic maximum lift coefficient of the wing is a contributing factor. The effect of the flap in deflecting the slipstream determines the wing attitude angle required to sustain the aircraft in equilibrium flight at a particular speed condition. By increasing the size of the flap there will be an increase in flap lift effectiveness, thus requiring a lower wing tilt angle with the resultant lower wing angle of attack. Further improvement will result from changing to a down-at-center propeller rotation. Down-at-center rotation delays inboard stall because of the reduced angle-of-attack, and the strong tip vortex tends to keep the tip area from stalling. As a corrollary, the elimination of wing stall will improve the flow over the tail, making it more effective in the transition. With flapped wings, it is now apparent to make considerable use of leading-edge high-lift devices to avoid early leading-edge separation, so that maximum potential of the trailing-edge flaps can be realized. #### Structure The K-16B flight envelope approaches that of operational aircraft. Extensive static and dynamic structures stress analyses supported by several tests were performed. On the whole, little difficulty was encountered because of the conservative approach to design, but a few problems did arise. The fuselage and landing gear stress analyses showed the JRF-5 to be structurally adequate for the K-16B criteria except for two minor areas. The modifications are simple and are outlined in KAC Reports G-113-25 App. I (30) and G-113-18 Rev. A (23). The wing stress analysis was substantiated by proof-load testing of two conditions adjudged most critical. While relieving load following completion of the final test, a malfunction of test equipment caused a momentary very high localized load, resulting in some damage to the wing. A temporary repair consisting on a doubler over the cristing lower skin and covering one rib bay was determined to be adequate for all projected ground and wind tunnel testing. A permanent repair, adequate for flight, has been planned. Structural dynamic analyses were substantiated by a vibration survey of the complete airframe. Some of the data showed high lateral peaks at the hub on the upper side of the operating range with anti-symmetric excitation. The motion was noticeable on the left-hand nacelle. Local stiffening reduced the amplitude and raised the frequency of this peak out of the operating range. The end result of the testing found that rotor and structural damping were more than adequate to prevent divergent oscillations in those regions of resonance that might appear in the operation range (KAC Report G-113-27)(32). As a result of the evaluation of hovering flying qualities on the NAA analog simulator, the Bureau requested that a stability augmentation system be investigated for the K-16B. It was found that several systems of relatively little complexity had already been developed, including some under contract to the Navy, and that two of the systems were compatible with K-16B requirements. The system selected was a three-axis rate damping system in which gain and authority were 30 per cent, and both gain and authority under the control of the pilot in stepped inputs. The system was composed of stabilization networks and gyros developed for the HTJ.-7 helicopter and of hydraulic dampers used in the F100C damper system. #### POWER-AND-DRIVE SYSTEM The power-and-drive system has had two particular problems - failure of the sprag-type over-running clutch in the main transmission, and turbine rub in the YT58-GE6 power turbine. Considerable effort has been expended on these problems and, to date, a significant improvement has been made in reducing the rate of failure. Solution of the one problem will undoubtedly lead to solution of the other. After failures of two of the original sprag clutches, a change was made to a higher capacity unit. Following a failure of this unit, a detailed analysis of the drive system was completed. This analysis, substantiated by test, indicated that a resonance occurred close to two-permet of the engine drive shaft. The effective misalignment of the engine drive shaft is 1.86 degrees. Bench tests of the clutch revealed that sprag engagement caused elliptical deflections of the outer race that were proportional to the applied shaft torque. This caused the clutch to act as a torsional spring of much lower rate than a structural analysis based on radial loading would indicate. An eleven-degree-of-freedom torsional analysis indicated a natural frequency of 11,755 cpm in the fifth mode. This is almost exactly two-per-rev. An earlier but simpler analysis had not detected this frequency. To corroborate analysis, and to determine the effect of the torsional damping inherent in the system, a rig runup test was performed with strain-gages on the drive-shaft. Results showed a torsional natural frequency at 11,400 cpm, and vibratory torque (two-per-rev) of +1200 lb-in, or 20 per cent of normal steady torque in the driveshaft. Calculation of the shape of the fifth mode indicated that the vibratory torsion in the transmission input shaft, from the Hookes-coupling excitation in the engine driveshaft, would be 37 per cent of normal torque. During an attempt to obtain further data, the excessively high two-per-rev torque resulted in failure of the sprag unit. To reduce the resonant amplification, the torsional natural frequencies were shifted by changing the driveshaft from aluminum to a dimensionally identical steel shaft, resulting in a 3:1 reduction in torsional vibratory loads. The fact that the high vibratory loadings experienced in this case were caused by an effective misalignment of only 1.86 degrees illustrates the potential seriousness of Hookes-joint dynamic excitation. Concurrent with the sprag clutch problems was a turbine-rub problem. Measurements of the vibration on the YT58 main reduction gearbox indicated a strong two-per-rev of this part. By adding a redundant mount to the gearbox, the vibration level was reduced and life of the power turbine increased slightly. Further investigation into the source of this vibration indicated that additional reduction in the level could be obtained through redesign of a special universal joint adjacent to the gearbox. When incorporated into the airplane while at ARC, another increment of improvement resulted. A natural question would be - why not use a constant velocity joint? Simply, system geometry and envelope prevented the use of any available standard unit. These drive system problems are probably due to two factors - the necessary structural and drive system geometry to accommodate the engine installation, and to unknown and unanticipated dynamic problems in the engine itself, introduced by the unorthodox installation. The limited data taken on the power-and-drive system vibratories indicate that the largest magnitude exists in the engine-engine driveshaft-angle box area. A vibration survey of the airframe-installed system will disclose the source. If in the driveshaft system, a redesign to incorporate constant-velocity Zurn or Bossler joints will eliminate the two-per-rev forcing function of the present joints. If in the engine, then it must be qualified for all-angle operation, assuming the present nacelle-mounted installation is to be kept. Sliminating these vibratories will eliminate the sprag clutch and turbine rub problems. Early in the endurance stand operation a failure occurred in the main transmission input shaft. It was a fatigue failure attributed to high vibratory bending moments arising from the cantilever design of the shaft on which the sprag clutch was installed. The shaft was redesigned and the clutch relocated to provide better support for the shaft. #### MISCELLANEOUS Upon completion of the airplane it underwent functional tie-down testing. No
particular schedule of operating hours was programed; tie-down was to be merely a functional checkout. During the testing, which accumulated slightly in excess of 6 hours, all systems were operated both with and without the power-and-drive system running. Operation included traversing the wing through its tilt range with the rotors operating at rated power and rpm; operating the wing-flap system; controls - both airplane and helicopter; and the various ancillary systems. The remote instrumentation set-up for the full-scale wind tunnel operation was also checked out. None of the blade-flap control problems that were to arise at ARC and on the endurance stand were evident during this operation. This could well-be because the pilots were not holding high cyclic inputs for any appreciable length of time. The major problem encountered was excessive control break-out forces resulting from a multiplicity of small-diameter pulleys required to accommodate the existing fuselage structure. To correct, a boost system using existing in-house components has been designed. # FULL-SCALE THRUST STAND and WIND TUNNEL PROGRAM Following functional tiedown testing, the K-16B was shipped to NASA, Ames Research Center (ARC), for a brief evaluation in the 40x80 foot wind tunnel. Operation of all aircraft systems while in the tunnel was by remote control; similarly, data was taken remotely. It was a mandatory requirement of ARC that prior to wind tunnel tests all systems - airframe, remote control, instrumentation - be demonstrated on a static thrust stand. This operation was expanded to take hover data in the areas of rotor thrust and control effectiveness - data that could not be taken in the tunnel because of recirculation. The wind tunnel operation was concerned with rotor thrust, control effectiveness, and wing stall in transition, and blade flapping and damping in forward flight. The results of the thrust investigation at both the static stand and the wind tunnel denote that the thrust developed by the presently configured rotor is approximately 10 percent less than that projected in the original design. Control effectiveness is dependent to some extent on developed thrust, so there is a decrease in control moment compared with that originally predicted. Wing stall characteristics appeared more severe than those encountered during 1/8-scale model wind tunnel tests. No problems arose as a result of the blade flapping and damping investigation – the rotor was well damped and responded as predicted. Working from the ARC data we have shown the validity of the analytical treatment of rotor performance; that the performance degradation was due to off-optimum test hardware. The off-optimum characteristics result from a rotor designed before the availability of adequate criteria, and not updating the hardware as additional criteria did become available, because the program was a research effort, not a product improvement program. By varying several parameters of the rotor system, sufficient thrust can be provided to assure vertical flight performance of the K-16B at any feasible gross weight. This thrust improvement will also provide an increment of improvement in control effectiveness. The stalling tendencies can be improved on all sections of the wing by two modifications. One is to increase the size and effectiveness of the wing flap. An increase in flap lift effectiveness will require a lower wing tilt angle to sustain the aircraft, and so a lower wing angle of attack. The second modification is the installation of leading edge slats. Because slats sustain load they reduce wing loading, hence angle of attack required. At the same time, a well-designed slat will increase the stalling angle of attack. An analysis has indicated that the stall in the area of the wing swept by the slipstream can be eliminated, and that center section stall can be greatly alleviated, both in level flight and at reasonable rates of descent during transition. A generalized treatment of the problems has been given in the preceding section. This section will present an analysis and correlation of the test data. In Appendix C are descriptions of the test equipment and operation, and in Table VI of the appendix are parameters of the various test runs. In Appendix D is the derivation of analytical methods for determining propulsive-rotor performance in hover, transition, and forward flight. #### HOVER The usual propeller is designed to operate in the cruising condition at the ideal angle of attack for each section along the blade. This can be done because the radial variation in ideal angle of attack can be made coincident with the twist distribution for the design condition. But this leads to a rather highly twisted blade (about 40 degrees) with a hyperbolic distribution. In this case, static thrust is of secondary importance. However, for the VTOL aircraft static thrust is of primary importance. Either camber or blade area must be increased to generate enough static thrust for vertical take-off. Furthermore, the twist should be lower with a linear distribution. But a blade with these characteristics will have unacceptably poor efficiency at the low thrust coefficients required for partial power cruise. Hence, there is a cruising efficiency penalty inherent in a high-activity-factor, static-thrusting propeller. For example, to satisfy hovering requirements a highly-cambered airfoil is necessary to obtain a high blade loading. But the rapid drop in required thrust from hover to forward flight forces the propeller to operate at low thrust coefficients in cruise. To operate efficiently at these low coefficients, a low solidity and a lower camber is needed to keep blade loading near the maximum lift/drig ratio on the blade section. It would appear profitable to vary camber to provide a high camber in hover and a lower camber in cruise. We accomplish this camber variation by flaps in the blades. This allows the selection of a blade profile that is compatible with the high-speed propeller requirements, but by collective flap deflection attain the higher lift coefficients (because of the greater virtual camber) required for hover performance, and with ample margin for necessary cyclic control without stall. # Performance (Propulsive-Rotor) Tests were made on a static thrust stand to determine the performance and controllability of the aircraft in simulated hovering flight. Because the K-16B propulsiverotor blade loading is varied by introducing camber with a flap on each of the blades, static performance tests were run with various values of collective blade-flap deflection, $\sigma_{_{\mathrm{O}}}$. A schematic force diagram of the static stand is shown in Figure 20. Figure 20 Force Diagram Thrust was not measured directly. The aircraft was mounted on three load cells corresponding to the three wheels, lift and drag forces were measured, and pitching moment determined. The resultant of the lift and drag is essentially the thrust except for the drag of the nacelle and that part of the wing affected by the slipstream. With the wing flaps up, this has been estimated to be a drag of 6.07q, which yields an approximate nacelle and wing slipstream drag of 1.3 percent of the thrust. Therefore, the resultant force is less than the rotor thrust by about 60 pounds in 4500 pounds. The resultant force is presented as a function of shaft horsepower in Figure 21a, and is compared with the results of a static-thrust strip-analysis (Appendix D, Figure 83). Both the calculated and the test results were reduced to shaft horsepower at the engine output shaft. The turbine output power was corrected for both engine reduction gear losses and for loss for operating at non-optimum rpm. Engine inlet temperature was measured near the compressor face. Inlet pressure was not measured, so no correction was made for inlet duct losses, although the loss is estimated to be 2 percent. Insufficient data were obtained for the construction of a complete performance map of thrust versus power for various flap deflections. Nevertheless, the experimental data that were obtained agree fairly well with the envelope of the calculated performance map (Figure 21b). The drag due to the flapped wing in the slipstream seems to be reflected in the test data of the figure where, with 46 degrees of wing flap, the resultant force is reduced by 300 pounds for the same power. Because of the agreement between the analytical and the experimental results, the analysis can ascertain the elements that determine performance. For example, subtracting transmission losses from the test point corresponding to 7700 pounds of resultant force ($C_{\rm T}/\sigma = 0.163$) at 15 degrees of collective flap (Point A, Figure 21a) moves it to the left for a rotor horsepower of 1523. The rotor figure-of-merit is then 0.615. This point closely corresponds to the peak of the theoretical curve for a collective flap deflection of 12.5 degrees, shown in Figure 83. Figure 22 shows the radial variation of M, C_T/\mathcal{O} , and L/D for this condition. Figure 22a discloses that the mean figure-of-merit is reasonable despite local discontinuities. The dip at Sta. .50 is caused by vortices generated at the flap inboard juncture; that at Sta. .95 by the flap/tip juncture and the drag of the external chordwise flap-control rod. The lift-drag Piggre 2. Englt Byresposer Comperison of Analysis and Peet Bets Figure 22 ratio in the flap region is fairly low, because of the drag due to the 15 degrees of flap deflection. A number of possible changes to the rotor, discussed in the preceding section, led to a reduction of deflection from 13 degrees to 5 degrees. Figure 22b illustrates the advantages to static figure-of-merit by so reducing the collective deflection. The reason is, the variation of drag coefficient increment with flap deflection is approximately parabolic, whereas the lift coefficient varies linearly. Hence, there is a better L/D at
low flap deflections than at high flap deflections. with lower flap deflections, though, a lower thrust coefficient is obtained at the original design tip speed. An increase in tip speed permits the required thrust to be generated at the lower coefficient, as is shown in Figure 22b. However, tip speed is limited by the onset of drag and lift divergence because of compressibility. When this occurs, the required thrust can be attained only by an increase in basic camber. But, the inability to decrease basic camber when thrust requirements drop off at cruise leads to negative thrust on large portions of the blade, and decreases the blade lift-drag ratios. There is, then, an optimum combination of blade design parameters and variable camber for any particular thrust-speed variation. # Performance (Wing-Flap) The performance of the wing-flap combination in the static thrust condition is manifested by the slipstream turn- ing angle (-), and the turning efficiency F/T; that is, the percentage of thrust that is left after the slipstream is turned. Turning angle test results are given in Figures 23, 24, and 25. The aircraft was tested with the fuselage mounted in a nose-up attitude (approximately 14 degrees which is 3 degrees greater than normal ground attitude), and the wing in several tilt positions. Lift and drag forces were measured in the vertical and horizontal directions, respectively. Referring to the diagram: (Diagram on next page of text) Figure 23 Turning Angle and Efficiency (Static Test Results) Figure 24 Variation of Aerodynamic Characteristics with Total Engine power Figure 25 Variation of Lift and Drag angle = $$90 + 8' - (\infty + 7)$$ (1) where $$\gamma = \tan^{-1} \frac{D}{1}$$ The slipstream turning angles obtained from the data of Figure 24 and 25 are shown in Figure 23. The large scatter in the drag curves of Figures 24 and 25 have a more profound effect on turning angle than on resultant force. For example, using the Run 5 data from Figure 24, turning angles of from 20 to 22 degrees are obtained. But taking the drag data from the faired curve, angles from 14 degrees to 16 degrees are obtained. Including the drag data from other runs, turning angles as low as 4 degrees were obtained with 40 degrees of wing flap deflection. The scatter in the drag data is such that turning angles determined using these data are inconclusive. One possible reason may be the extrinsic tail wind that prevailed during most of the tests which would change the wing angle of attack in the slipstream, with its consequent effect on the measured lift and drag components. An indication of the turning efficiency can be had by observing the ratio of the resultant force with the wing flaps deflected to that with the wing flaps neutral, at the same pitch angle. The assumption made under these conditions is that the drag of the nacelies and plain wing is negligible compared to the drag of the wing with the flaps extended. These results are shown at the top of Figure 23 and are labelled F/T. Figure 2 of NACA Memo 1-16-59L(55) was used as an aid to interpret the results of these tests. With .40C flap, the flap chord diameter ratio is 0.174. Using the faired curve (Ibid), a turning angle of about 19 degrees is indicated. If the data points of this figure are used instead of the faired curve, a turning angle of 16 degrees is probable, which is in approximate agreement with most of these test results. The turning efficiency for the slotted flaps, intimated in the reference, is not quite attained in these tests. An analytical approach toward interpreting these results can be made by reducing the slipstream turning angle, e and efficiency, F/T, in terms of oral nary wing lift and drag coefficients. Referring to the next sketch: $$\frac{F}{T} = \frac{1}{T} \sqrt{L^2 + (T - D)^2}$$ (2) In hover, $T_C'' = 1.0$ and $$T = \frac{T_c'' q_{res}}{k_s^2} \frac{N\pi R^2}{S_s} S_s$$ (3) Substituting equation (3) into (2), and dividing through by ($q_{\text{res}}S$): $$\frac{F}{T} = \frac{1}{N\pi R^2} \sqrt{C_L^2 k_i^4 + \left[\frac{N\pi R^2}{S} - k_i^2 C_D\right]^2}$$ (4) Similarly, Substituting equation (3) into the above: $$\Theta = \tan^{-1} \frac{k_i^2 C_L}{\frac{N\pi R^2}{S} - k_i^2 C_D}$$ (5) Thus, the turning angle Θ and efficiency F/T can be expressed in terms of ordinary lift and drag coefficients C_L and C_D . To determine the value of C_L and C_D for equations (4) and (5), the test data can be used. For example, rearranging Equation (5): $$C_{L} = \frac{\tan \Im}{k_{i}^{2}} \left[\frac{N \pi R^{2}}{S} - k_{i}^{2} C_{D} \right]$$ (6) and using Equations (4) and (6) $$C_0 = \frac{N\pi R^2}{Sk_1^2} - \frac{C_L}{\tan\Theta}$$ The constant, k_1 , is the proportion of the theoretical velocity in the ultimate wake that actually exists at the aerodynamic center. As it is not precisely known, the values of C_L and C_D are presented as a function of k_1 in Figure 26. They are given for the basic configuration with .40 \overline{C} wing flap for one of the points shown in Figure 23, for a turning angle of (\overline{C} = 16 deg) and an efficiency of ($\overline{F}/\overline{T}$ = 0.95). The maximum value of k_1 (0.79) is the theoretical value found by the momentum theory of KAC G-113-4, Appendix B (9). The C_L and C_D curves of Figure 26 reveal some reasonable values of C_L , C_D , and k_1 , which are likely to yield a measured Θ and F/T. The lift and drap coefficients must first be corrected for the effect of partial span flaps, for only a portion of the wing is immersed in the slipstream. The flap lift and drag increments can be obtained from NACA WR L-441 (56), or from the power-off wind tunnel data, exhibited in Figure 27, corrected for partial span by the method of NACA TN 3911 (57). Applying these corrections leads to a lift coefficient of 0.75, and a drag coefficient of 0.23. Referring to Figure 26, these values of lift and drag coefficient in turn lead to a turning angle, Θ , of 16 degrees at a k_1 of approximately 0.74. This seems to indicate that the Lift and Drag Confficients Corresponding to Faired Turning Angle and Efficiency ٠. Figure 27 Variation of Drag Coefficient and hull Angle of Attack with Lift Coefficient slipstream velocity at the nerodynamic center is less than that theoretically inferred from momentum considerations. The effect of lift and drag coefficients on the slipstream turning efficiency and angle is more graphically illustrated in Figure 28. It was constructed using Equations (4) and (5). This figure implies that it is more beneficial to increase the flap lift increment rather than to reduce the drag coefficient. Using this figure, with $k_1 = 0.75$ and = 16 degrees, the lift coefficient is 0.725 at a drag coefficient of 0.25. Increasing the lift coefficient to 1.025 increases the turning angle to 22.2 degrees, and the turning efficiency from 0.945 to 0.975. The figure also shows that with given lift and drag coefficients, only one turning angle can result unless the velocity, $\mathbf{k_1}$, at the aerodynamic center changes. With the previously derived values of lift and drag coefficients, and a value of 0.74 for \mathbf{k}_1 , the resulting angle is 16 degrees and the efficiency 94.3 percent. These points agree fairly well with the test points of DTME Report 998 (47), and somewhat with those given in NACA Memo I-16-59L (55) by the test points for the same configuration, namely, (-) - 16 degrees, F/T - 0.98. These charts, therefore, can serve as a guide to the effect of configuration changes on turning efficiency and angle. Table II summarizes the angles and efficiencies indicated by various methods for this condition. (Table II on next page of text) Pigure 26 Hifect of Lift and Drog Coefficients on Slipstress Paralog ingle and Efficiency | Table II
Turning Angles and Efficiencies | | | | | | | | | |---|-----------------|------------------------|--------------------------|----------------|----------------|----------------|------|------| | Configuration | | | | | | | Θ | 7 /9 | | Flap | o\f | Gap | Source | C _L | C _D | k ₁ | Deg. | F/T | | .40C
Fowler | 40° | .015
C _f | Present
Tests | .54 | .22 | .79 | 13.5 | .94 | | * | | 1 | Present
Tests | .75 | . 27 | .75 | 16 | .943 | | | | | Present
Tests | 1.09 | .325 | .6 | 15.5 | .945 | | | | Ť | Ref 55
Test
Points | | | | 15.5 | .985 | | .40C
Fowler | 40 ⁰ | .015
C _f | Ref 55
Test
Points | | | | 19 | .98 | ^{*} Used in subsequent analyses ### Controllability Control of the K-16B in hovering and low-speed flight is primarily attained by cyclic flapping and collective pitch displacement of the rotor blades. Longitudinal control moments are the result of the cyclic deflection of the blade flap, which induces flapping about the axis paral-lel to the wing span. Lateral and directional control moments are functions of differential blade pitch between the left and the right rotors, and of lateral cyclic flapping. The lateral and directional controls must be properly phased to result in control moments about the respective body axis. For example, lateral flapping results in a yawing moment about the vertical axis through the wing. Because of the partial wing-tilt, this moment has two components in the body axes - yaw and roll. To counteract the rolling moment resulting from lateral flapping, differential collective pitch is introduced in the opposite sense. The system is fully described in KAC Report G-113-4 (9). (Also see Appendix A). It was one of the purposes of the full-scale tests to determine the degree to which compensating moments were necessary to obtain pure body axis moment control. Another purpose was to determine the amount and phase relationship of blade flapping, and the cyclic blade-flap deflection. This relationship is called "cyclic sonsitivity". # Cyclic Sensitivity Part of the control moment is due to a centrifugal
moment about the rotor hub resulting from the offset flapping hinge and the blade flapping (Ibid). The flapping hinge offset changes the cyclic sensitivity and the natural frequency of flapping to bring the system off resonance. The degree to which the system is off-resonance is a function of the offset, the first mass moment about the flapping hinge, pitch-flapping coupling, and the thrust coefficient for the particular flap-chord ratio. The flapping equations of motion are given in Appendix D. These equations yield the longitudinal cyclic sensitivity and phase angle shown on Figure 86. The para- meter // in this figure is defined as: $$\frac{f}{g} = \frac{em_b \bar{r}}{eacR^4}$$ where: e - flapping ninge offset, ft mh - blade mass, slugs $\tilde{\mathbf{r}}$ - distance from the flapping hinge to blade c.g. c = blade chord, ft R = blade radius, ft a = lift curve slope It is apparent from Figure 86 that for constant offset, such as exists on the K-16B rotor, as the blade gets heavier or the c.g. moves outboard, the longitudinal cyclic sensitivity is reduced and the phase angle moves from 90 de- grees. The introduction of negative $\sqrt{3}$ brings the flapping motion back toward resonance and returns the cyclic sensitivity. Point A of Figure 86 indicates the position of the original design of the K-16B rotor. Subsequent modifications led to a blade that is represented approximately by Point C. The $\sqrt{3}$ angle built into the blade is -28 degrees, and the azimuth is indexed at 21 degrees. As a result, the phasing was expected to be about 13 degrees off at the maximum thrust coefficient, and the cyclic sensitivity down to 0.47. Of course, at lower thrust coefficients, the cyclic sensitivity would be further reduced as shown by the figure. Besides cyclic sensitivity and phase angle, the total controllability depends upon the amount of moment obtained from a given amount of blade flapping. Using the analysis of Appen ix D, the hub-moment and total moment are shown in Figure 87 as a function of $\int_{\mathcal{T}} \mathbf{r}$ and \mathbf{r} angle for the normal thrust coefficient. This figure shows that the longitudinal component of the hub-moment and the total moment both increase with either an increase in $\int_{\mathcal{T}} \mathbf{r}$, or an increase in negative \mathbf{r} angle. It increases with the latter because the system is brought closer to resonance and the cosine approaches unity. Test Results: The measured cyclic sensitivity is shown ir Figure 29 compared with the results of the analysis Comparison of Cyclic Sensitivity given in Appendix D; Figure 86, for the particular thrust coefficient (in this case the resultant force coefficient). Also, in Figure 30 is shown the total pitching-moment compared with the analytical results given in Figure 87. The cyclic sensitivity for Run 4 could not be measured for the flap-deflection potentiometer was not fully installed. The total pitching-moment however, as a function of longitudinal flapping is in good agreement, so the cyclic sensitivity must also be in good agreement. It is not the pitching moment given in KAC Report G-113-4 (9) for full cyclic input at full thrust. There are two reasons for this. First, in these tests total cyclic input amounted to only 15 degrees of cyclic flap d'lection instead of the design 25 degrees used in the original analysis (Ibid). Second, as shown in Appendix D, Figure 86, cyclic sensitivity is a function of the thrust coefficient. Full hovering thrust was not attained in these tests, and the cyclic sensitivity is diminished. In addition, part of the pitching-moment is due to the thrust force; for example: $$\frac{dM}{da_i} = \frac{dM_H}{da_i} + T \left[x_h + \frac{dC_{lw}^{"}}{da_i} \left(\frac{S}{\pi R^2} \right) \right]$$ (7) and $$M_{i} = \frac{dM}{da_{i}} \left[\frac{da_{i}}{dd_{i}} \right] \frac{dd_{i}}{dd_{s}} ds$$ (8) where: $$da_1/doldsymbol{1}$$ = cyclic sensitivity Because the cyclic sensitivity is a function of the thrust, the hub moment is also a function of the thrust. These two reasons - the restriction in cyclic flap deflection to 15 degrees, and the lower thrust of the tests - fully explain the difference between these results and the analytical design projections of G-113-4. Wing Straightening: An interesting point of these tests is evident in Figure 30c. When the stick is displaced forward, the rotor fiaps forward (the disc tilts forward). The rotor thrust vector points more forward; the vertical component of the thrust is reduced and the horizontal component increased. At the same time, the forward tilt of the disc redirects the slipstream, causing an increase in the wing angle of attack, and the wing lift and drag are increased. The vertical component of the wing lift, then, increases when the corresponding component of the thrust is Comperises of Experisents: and Analytical Pitching Moment reduced, and the horizontal component of the wing lift and drag increases to counterbalance the increase in forward horizontal component of the thrust. The two effects of the rotor and wing tend to cancel each other, or, the wing tends to straighten the slipstream and there is little change in aircraft lift and drag with cyclic control. Figure 30c shows the cancellation is almost total within the experimental accuracy. This reduces the thrust moment by changing the moment arm to approximately the distance from the hub to the wing aerodynamic center, rather than from the hub to the CG. Cyclic Power: Another effect of cyclic control is the power required. According to the analysis of Appendix D, both profile and induced power are effected. Figure 31 compares the calculations with the results of Run 009L. This Figure 31 Power for Cyclic Control power-required can be compensated by a suitable kinematics linkage in the engine control geometry, or by an isochronous governor. ## Lateral Directional Rotor Control The lateral-directional control moments are obtained on the K-16B by a proper proportioning of differential collective patch between the two rotors, and of lateral cyclic rotor flapping. The details of the functions are given in KAC Report G-113-4 (9) and in Appendix A, but will be summarized here for completeness. Lateral control is obtained by differential blade pitch, that is, increasing the thrust on one ro'or and decreasing it on the other. Because of the partial wing tilt, both a rolling moment and a residual yawing moment result. The induced yawing moment is compensated by the introduction of lateral cyclic flapping. Directional control is obtained by lateral cyclic blade flapping. This causes a sideways tilt of the rotor thrust vectors, producing a yawing moment about the wing yaw axis, as well as a centrifugal hub moment in the same direction. Again because of the partial wing tilt, a rolling moment is induced about the body axis. This rolling moment is compensated by the introduction of differential blade pitch in the opposite sense. The introduction of both compensating controls is effected as a function of wing tilt through appropriate linkages. It is one of the purposes of these tests to determine the degree to which the primary controls and the compensating control linkages accomplish their purpose. The tests should indicate the cyclic sensitivity, or the amount of flapping produced by the cyclic flap deflection. In this case, the lateral cyclic sensitivity should be the same as the longitudinal for the same thrust level. The comparison is shown in Figure 32. An adequate analysis of the results of controllability tests entails carrying the measured components of the control moments to an aerodynamically common base; ie, a point that separates the aerodynamic results from the mechanical system. Only in this way can the results be interpreted in physical terms independent of the functioning of a mechanical system. Such a common base for comparison is the wing axis system before control compensation is introduced. Blade flapping is a result of aerodynamic moments on the blade, and depends on the blade-flap input. The test should express the wing axis yawing moment for the amount of flapping obtained. This was determined from the body axis Figure 32 Comparison of Cyclic Sensitivity with Lateral Flapping measurements (Figure 33) by a transfer of axes, and are shown in Figure 38. If the primed moment symbols denote the wing axis system and the unprimed symbols the body axis system, these axis transfer equations are: $$N' = L\sin T + N\cos T$$ $$L' = L\cos T - N\sin T$$ (9) The wing axis yawing moment is a function of a hub moment, a thrust moment, and a yawing moment contributed by the spoilers when the stick is deflected laterally according to the following equation taken from KAC Report G-113-4 (9): $$N' = \left[\frac{\partial M_H}{\partial b_i} + Tx_h\right]b_i + \frac{F}{T}\overline{y}\cos\Theta\frac{dT}{d\Theta}\triangle\Theta + N_s \tag{10}$$ The corresponding wing-axis-system rolling moment is: $$L' = \frac{F}{T} \overline{y} \sin\Theta \frac{dT}{d\Theta} \triangle\Theta + \frac{dQ}{d\Theta} \triangle\Theta + L_s \qquad (11)$$ (When the rudder pedal is depressed there is no spoiler projection, so $N_{\rm g}$ and $L_{\rm g}$ are eliminated.) Substituting the previously determined component parts (F/T, Θ , etc) into equations (10) and (11) will reveal the contribution of each part to the over-all moment. The experimental results will be consistent if the wing-axis rolling and yawing moments, determined by inserting the experimentally established components into equations (10) and (11), agree reasonably well with those found directly when using the axis transfer equation (9). The same moments obtained by inserting the analytical components into equations (10) and (11), when compared with the other two methods, will furnish an insight into the precision with which such moments can be estimated. First, consider the case when the stick is deflected laterally (Run 021L). The measured body
axis rolling and yawing moments are shown in Figure 33b. In this case, the principal control is differential collective pitch with lateral cyclic as compensation for the yawing moment that is (a) Differential Blade Fitch, △◆, Dega. Figure 33 Lateral Control Characteristics <u>Produced.</u> The cyclic flap deflection, flapping angle, and right rotor pitch are given in Figure 34 as functions of lat- eral stick deflections. The F/T and (-) of equations (10) and (11) were taken from Figure 23. Two other items for insertion into the equations are the variations of thrust and torque with pitch. The analytical values are found in Figure 35 with any experimental values obtained also entered. The thrust results of Runs 004L, 005L, and 008L ($\sigma_0 = 14.8$) show reasonable trends. The thrust-pitch slopes obtained from the strip analysis are in good agreement with these results. At the low values of flap deflection, however, the absolute values of blade pitch are about one degree high. This is a result of centrifugal twisting moments as shown in KAC Report G-111-4 (5). The thrust value of Run 021L was determined by taking the torsional flexibility into account. The shape of the torque-pitch curves is similar to those found analytically (Figure 35). The absolute value is not directly involved in the equations, but only the slopes. The differential collective pitch must now be accounted for. Blade pitch was measured on the right rotor only. The reasonableness of an equal pitch increment on the left rotor can be determined by working backwards from the experimental results (Figure 33) with the aid of the vector diagram of Figure 36. Point 8 corresponds to the last point of Figure 33 for right stick deflection. The body-axis rolling moment (L) is 13,000 ft-lb, and the yawing moment (N) is 3500 ft-lb. Starting from the plot of this test point on the vector diagram (Figure 36a), the first component to be analyzed is that due to lateral cyclic flap. From oscillograph record 1696, b₁ was found to be +1.3 degrees. The right rotor pitch is 8.1 degrees for neutral stick. Correcting for centrifugal twist, from KAC Report G-111-4 this becomes 5.9 degrees, which according to Figure 35 yields a thrust of 2940 lb, or 5880 lb for two rotors. The wing-axis yawing moment (N') due to lateral cyclic is: $$N_i = \left[\frac{9p^i}{3M^H} + Lx^H\right]p^i$$ Figure 34 Control Motion With Lateral Stick Excursion Pigure 36 Vector Diagram Sorly is of Lateral Control Momenta which for this case is: $$N' = \left[1735 + \frac{5880(8)}{57.5}\right] + 1.3 = +3320 \text{ ft-lip}$$ The 1735 ft-lb/deg (99800 ft-lb/rad) for the hub moment derivative is given in Figure 87, and is corrected by 4 percent for the reduced thrust. This is laid out on the vector diagram (Figure 36a), starting from the test point and parallel to the N'axis. This is straightforward. Next must be determined the effect of differential collective pitch. The effect of this pitch increment is to produce a thrust moment component parallel to the wing yawing axis, and a lift moment component parallel to the wing rolling axis. Because the blade pitch was measured only on the right rotor, the pitch on the left rotor was determined by applying the same pitch increment between static calibration and dynamic deflection on the left rotor as had occurred on the right (Figure 37). The total actuator-indicated differ- Figure 37 Increment in Differential Collective at Actuator Due to Elastic Deformation ential collective pitch was so found. The values of 5.6 and 10.8 for full right stick were corrected for blade centrifu- gal twist (G-111-4)(5) to yield a final $\triangle \bigcirc$ of 4 degrees. The values of differential collective pitch shown on Figure 34 were corrected for centrifugal twist, whereas the raw data presented in NASA TN 2538 (53) and by Weiberg (58) were not so corrected. The thrust moment component is given by: $$N_T' = \frac{F}{T} \sqrt{g} \cos \Theta \frac{dT}{d\Theta} \Delta \Theta$$ Referring to Figure 23, the slipstream turning angle () and efficiency F/T are approximately 16 degrees and 0.94 respectively. From Figure 35 the average thrust-pitch curve slope is 190 lb/deg. Substituting these factors into the foregoing equation, the thrust moment component becomes 8,000 ft-lb, drawn parallel to the N' axis on the vector diagram of Figure 36a. The lift component of the differential collective input is just the sine component: $$\frac{F}{T} \overline{Y} \sin\Theta \frac{dT}{d\Theta} \Delta\Theta = \frac{8000(.259)}{.965} = 2150 \text{ ft-lb}.$$ This is laid out parallel to the L'axis, and the vector marked "Differential Collective" can be drawn. The torque component is straightforward and can be obtained from Figure 36 as $$\frac{d\Theta}{dQ}\Delta\Theta$$ where $$\frac{dQ}{d\theta} = \frac{220 + 150}{2} = 185 \text{ ft-lb/deg}$$ parellel to the wing rolling axis, L' (Figure 36a). The vector diagram now shows a negligible amount of wing axis rolling moment to be furnished by the spoilers, and a rolling and yawing asymmetry. The rolling asymmetry is a little less than that shown in Figure 33a for zero stick. The dotted vector diagram shows the point that would be calculated using the foregoing components plus the effect of spoilers. The spoiler effect was found from tunnel tests (Run 39), suitably corrected for the dynamic pressure and wing area affected by the slipstream (G-113-4)(5). The spoiler rolling moment is $L_{\rm S}' = 0.145T$ and the corresponding yawing moment is $N_s' = 0.0695T$ for the 43 degrees of spoiler projection. The final end point, Figure 36a, $$L = 11,600 \text{ ft-lb}$$ N = 2,200 ft-lb is within the experimental accuracy of the test as shown by the scatter in the data. Points corresponding to left stick (Point 1) are also shown in the vector diagram. Having the component parts for equations (16) and (11), the wing-axis rolling and yawing moments were obtained by the three methods, namely: - Directly from measurements using the axis transfer equations; - 2. Using equations (10) and (11) with experimentally determined components such as T, $$b_1$$, F/T , Θ , $\frac{dT}{d\Theta}$, $\frac{dQ}{d\Theta}$ 3. Using equations (10) and (11) with analytically determined components. They are compared in Figure 38 for Run 021L as functions of total differential pitch when lateral stick is applied. In general, the comparison is in good agreement. One reason for the scatter in the yawing moment is the scatter in the b_1 compensating blade flapping. For example, at neutral $\triangle \bigcirc$, the b_l is the same as at full right stick, 1.3 degrees, whereas it should have reduced to zero. Design Analysis: The various components can now be analyzed with respect to the original design (Figure 36b derived from G-113-4)(9). The reduction in slipstream turning angle from 26 degrees to less than 16 degrees had little effect on the rolling moment inasmuch as the required additional wing tilt did not change the direction of the differential collective vector. The reduction in the magnitude of the differential collective pitch, however, had an appreciable effect. The design differential pitch was 10 degrees, whereas the actual differential pitch (as tested) was 5 degrees at the actuator, and 4 degrees due to centrifugal twist and elastic deformation (Figure 38). The low spoiler effectiveness in hover would reduce the lateral cyclic compensation required, provided adequate differential collective pitch and its corresponding torque were provided (Figure 36b). The reduced thrust levels also led to a reduction in the effect of the differential collective pitch because the thrust-pitch derivative was lowered. It is therefore important in the design of any control system that uses differential collective pitch to account for all elastic deformations and the effect of reduced thrust effectiveness, particularly if operation at reduced thrust levels is expected. ### Directional Control The rolling and yawing moments measured upon pedal deflection appear as a function of blade lateral flapping angle, b₁, in Figure 39. Depressing the pedal deflects the blade flaps cyclically so that the rotors flap in the direction of the depressed pedal. Therefore, in the wing axis, lateral flapping is the logical aerodynamic characteristic leading to a yawing moment. The prime factors leading to a wing-axis yawing moment are the hub and the thrust moments due to cyclic flapping. The relationship between blade-flap cyclic deflection and lateral flapping for Run 021L is given in Figure 32. The analysis was made with equations (10) and (11), using the measured values of lateral flapping, b_1 , and the compensating differential collective pitch, $\triangle \bigcirc$. The wing-axis rolling and yawing moments calculated with the latter equations were converted to the body axes, for comparison with the measured values, by the following axis transfer equations: $$L = L'\cos \mathcal{T} + N'\sin \mathcal{T}$$ $$N = N'\cos \mathcal{T} - L'\sin \mathcal{T}$$ (12) where the primed symbols denote the wing axis system. Considering the scatter in the data, the analysis based on the equations is fairly accurate as is evident in ٠. : 1 Latural Plapping Angle, b. degraps Pigure 39 Directional Control Characteristics Figure 39. The accuracy with which yawing moment can be analytically predicted is better illustrated by referring the measured values to the wing axis system (Figure 40). In this system, lateral cyclic flapping directly furnishes yawing moment. This comparison verifies that the wing-axis yawing moment can be determined analytically. The manner in which wing-axis yawing and rolling moments combine to form body-axis yawing and rolling moments can best be illustrated by a vector diagram similar to the one used in the lateral control analysis. The point marked "Point 8" on Figure 39 ($b_1 = 5.5$ deg) is analyzed vectorially in Figure 41 by way of illustration. Starting from "Point 8" on the
vector diagram, the compensating differential collective pitch, when corrected for elastic deformation, was ~2.55 degrees. When combined with the F/T and Θ from Figure 23, the dT/d Θ from Figure 35, and using equation (10), it results in the differential collective triangle shown. Applying the torque derivative from Figure 35 brings the vectors to just the other side of the wing yawing axis, N'. Combining the hub moment and the thrust moment derivatives due to lateral cyclic, and using equation (10) as follows: $$N' = \left[\frac{\partial M_H}{\partial b_i} + \frac{T_{X_h}}{57.3} \right] b_i$$ parallel to the wing yaw axis, yields a slightly asymmetric body-axis rolling and yawing moment that is fairly close to that obtained experimentally (Figure 40). Design Analysis: Several facts can be gleaned from the comparison of the direct and the componential methods for determining wing-axis rolling and yawing moments (Figures 40 and 41). The most important is that wing-axis yawing moments can be predicted analytically. Secondly, in the tests there was insufficient compensating differential collective pitch, quite probably because elastic deformation was not accounted for. (See bottom of Figure 40) The original design is compared with the test results and several alternatives in the vector diagram of Figure 42. The reduced slipstream turning angle called for an increase in wing-tilt. This in turn had an adverse effect on the body-axis yawing moment, the change being proportional to Wing Axis Moments Due to Pedal Deflection Figure 41 Vector Diagrem Showing Directional Control Analysis Figure 42 Voctor Disgree Showing Control Moment Distribution the cosine of the tilt angle. The increased tilt required more differential collective for compensation, which was not available because of control system geometry. To summarize, the analytical methods applied to the rotor static performance lead to the explanation for a test-rotor figure-of-merit little better than most helicopter rotors. The principal reasons are: the large flap deflections and flap junctures cause high drag and, therefore, low section L/D; drag of the outboard chordwise control rod. The results of the wing performance tests are inconclusive in establishing a slipstream turning angle because of the large scatter in the drag data. However, reasonable values of wing-flap lift and drag increments are analytically shown to lead to a good average value of the test points for turning angle and efficiency. The turning angle of the flaps was reduced principally because of the reduced span of the flaps. Rotor control is a function of the moments and forces generated by blade cyclic flapping and differential collective blade pitch. The flapping is induced by cyclic flap deflection, the relation between them known as cyclic sensitivity. The cyclic sensitivity, and subsequent moments obtained in the tests, is almost exactly those analytically determined. They are not those of G-113-4 (9) for the original design however, because of mechanical restrictions in cyclic flap deflections, and the reduced thrust levels of the tests. The portion of the controllability dependent upon the slipstream turning angle and efficiency reflects the reduction in turning angle from the design value as well as the reduced thrust levels, and tends to substantiate the values deduced from the analysis of the wing-flap performance data. #### TRANSITION In the transition phase of a tilt-wing airplane, the vertical force is gradually transferred from the propellers to the wing (or conversely). This is most efficiently performed when the wing can sustain the greatest portion of the vertical load at the lowest possible speed. A large flap-lift effectiveness requires a lower wing tilt angle to sustain the aircraft, thus, a lower wing free-stream angle of attack. A lower wing angle of attack at any speed will reduce the tendency to stall in the transition. ### Airplane Performance Wind tunnel tests of the K-16B show that at conditions in which the aircraft would be balanced (lift equals weight, thrust equals drag) the wing was stalled. Figure 43 shows the analytically determined wing slipstream angle of attack throughout a revel-flight transition. With the unprotected leading edge, stall is exhibited between 25 and 70 knots, even in the slipstream. With no slipstream across it, the center section is stalled until the total wing angle of attack is reduced to subcritical values at the end of the transition. The stall is a result of the pylon wedges which become exposed when the wing is tilted, the large chordwise extent of the tiltable portion of the center section, and the lack of leading edge protection. The analytical trim procedure of Appendix D, which accounts for center section stall, was used together with data for certain representative slats to eliminate stall in the slipstream and minimize it at the center section of the K-16B. The center section stall boundary moved from 75 to 50 knots. The elimination of stall on the wing improves the flow over the tail, making it more effective so that it will assist the rotor in trimming the aircraft in this flight regime. At the same time, the out-of-trim moments will be greatly reduced. #### Trim Angle of Attack The free-stream angles of attack shown in Figure 43 were calculated using the longitudinal trim analysis given in Appendix D. These angles are for a K-16B gross weight of 9300 pounds. Because of wing stall, a lift of 9300 pounds was only once attained in the transition tests. The effect of the slipstream is duplicated (ie, the wing angle of attack is the same) if the disc-loading/q is the same. Also, the free stream q is determined by the lift equilibrium. Hence, the measured tunnel dynamic pressure need only be multiplied by the ratio of the wing loadings to determine the attitude angles corresponding to lift equilibrium of the aircraft in flight. This was done in NASA TN D2538 (53) and the test points are shown in Figure 43a. Prior to the full-scale tests, the 1/8-scale powered-model was tested with various Fowler flap configurations and leading edge devices. The attitude angles for lift and drag equilibrium from these tests are shown in Figure 43B, as well as those from both calculations and full-scale tests corrected to 9300 pounds. The figure shows good agree- Pigure 43 Wing Attitude Angle for Level Flight Transition ment in all three methods. Data from the 1/2-scale model tests are shown in Figure 44. Figure 43b reveals a convexity in the curve of attitude angle for equilibrium flight, whereas the original design was concave. The shape of the curve is indicative of the amount of rotor thrust (and power) required for balance, and points up the extent of the wing stall problem. The tuft sketches (Figure 45) imply a rapid outboard spread of the center section stall that is triggered at fairly low angle of attack by the wing pylon wedges that become exposed as the wing is tilted. The cross-shaft cover protrudes ahead of the leading edge and generates vortices at its edges, which also assisted the outboard spread of the center section stall. The combination of the high aircraft drag (Figure 27), and the rapid spread of the center section stall resulted in aircraft lift and drag balance at a well-stalled portion of the lift curve for all four transition points that were tested (Figure 46). # Rotor Thrust Estimate No provision was made for measuring rotor thrust in the wind tunnel tests. For a particular test an approximation of the T_C " was made, using the results of the 1/8-scale model tests given in Figure 44, and computing the slipstream based lift and longitudinal force coefficients as: $$C_L'' = C_L(1 - T_C'')$$ (13) $$c_{X}^{"} = -c_{D}(1 - T_{C}^{"})$$ (14) These were compared with the results of the 1/8-scale model tests, endeavoring to match the results in the low angle of attack range below the stall. Additional approximations were made, the process continuing until the best possible match was obtained. This was then considered the thrust coefficient T_C " to be used in the analysis to establish rotor par- ameters of power, cyclic sensitivity, and control. The results of this approach are shown in Figure 44 with symbols, and the 1/8-scale model results as bold lines. Only three thrust coefficients were tested in the 1/8-scale model runs and three different thrust coefficients estimated for full-scale for the same configurations, but the "carpet plot" method of presentation allows fairly accurate interpolation to be made. Comparison of 1/4 Scale Model And Pull Beale Figure 45 Wing Stall Patter's Figure 46 Power: The power required for balanced level flight from the tunnel runs is presented in Figure 47, as is an analysis of Appendix D. Figure 84, for the appropriate values of λ , λ , and C_T . It will be noted that these re- sults are different from those given in Figure 22 of NASA TN D2538 (53). There are two essential reasons for this discrepancy. First, the values in Figure 22 (Ibid) are for a 9300 lb aircraft, whereas those in Figure 47 herein are for the actual lift attained in the tests. It was considered advisable in an analytical correlation to avoid the additional uncertainties of a method for extending both profile power and induced power to apply to a higher gross-weight vehicle. The second reason is indicated by Figure 48, which shows different amounts of power reduced from the same data. The NASA points are the first three points of Figure 25 of TN D2538. Because no reason is known for the discrepancy and the total difference would militate against the analysis, it is advisable to give, in detail, the steps taken to reduce the engine data to SHP. Run 4, Figure 48, will be used to illustrate the procedure. In Run 4 a lift of 7000 lb was attained when sufficient power was introduced for drag balance. The power required was 1135 HP, and was obtained as follows: - 1. The inlet temperature,
as measured from the inlet duct thermocouples, was found to be 77°F leading to a $\sqrt{\frac{1}{2}}$ of 1.0165. - 2. From a "blip" count on the oscillograph records (Traces 2 and 3) the gas producer speeds were found to be 23760 rpm and 23900 rpm for the left and right engines, respectively. - From the calibration charts for the specific engines these led to values of $$\frac{\mathsf{HP}_{\mathsf{PT}}}{\sqrt{2}\sqrt{\theta_2}}$$ of 595 and 636, respectively. - 4. The inlet temperature and test section pressure led to a $\sqrt{2}$ of 0.964. - 5. Multiplying the values from the calibra- tion chart by $\sqrt{2}\sqrt{\Theta_2}$ led to HP_{PT} of 584 and 623 for the left and right engines, respectively. - The correction for operating off the optimum RPM depends on the power turbine speed, N₂. This is obtained - rom the rotor "blip" count, Trace 1, multiplied by the gear ratio. For this case it is 675(26.32) = 17750 rpm. - 7. This is corrected to standard conditions for entry into the G.E. chart (CA 123). This chart is entered both for the actual and optimum rpm (19,500), and the difference noted. In this case it is a loss of 20 HP for each engine, resulting in a total loss of 39.2 HP when corrected for temperature. - This is subtracted from HP_{PT's} obtained from Step 5, leaving 564 and 603, respectively. - 9. The main gearbox loss is furnished by the engine manufacturer as a function of power turbine speed. For this case, it was 16 HP for each engine, leaving net turbine shaft horsepower of 548 and 587 for the left and right engines, respectively. This procedure was used in the reduction of all the power data in this report, inasmuch as there is often a fair discrepancy between the N_1 as indicated by the tachometer and that obtained from the oscillograph record. There are many small corrections which, if neglected, lead to erroneous values of power. The analysis of Figure 84 agrees fairly well with the experimental values. It must be pointed out however, that the wing was in deep stall when drag balance occurred. The power required consequently was higher than it would be had there been no stall. # Rotor Performance The rotor is designed to provide high thrust for hovering flight, so the mean lift coefficient is high with collective flap deflection. As the thrust requirements drop off with forward speed, the propulsive-rotor becomes less efficient because the blade sections are operating at lower lift-drag ratios. The collective flap is retracted as the thrust drops off, and when nalfway through the transition is fully retracted. # Propulsive Efficiency Most of the transition tests of the K-16B were run with a constant 13 degrees of blade-flap collective deflection. In an actual aircraft transition, of course, flap deflection would be reduced from the optimum hover value to zero in forward flight. A thrust calibration was made at two airspeeds, 39 and 77 knots, assuming thrust equals drag. (These are the first two series of points in Figure 8c of TN D2538 (53)). This calibration was to be run with zero collective flap deflection, but there was an inadvertent deflection of 2.3 degrees. At the point at which the aircraft is balanced, Figure 49 indicates a power of 1080 HP. At this point the rotor propulsive efficiency was 53 percent. The calculated efficiency was 57.8 percent. Agreement is good, especially since in the tests the flap was deflected 2.3 degrees when supposedly retracted, and the strip analysis in forward flight does not provide for a collective flap deflection. The transition flapping analysis of Appendix D was used to determine the effect of flap deflection on rotor efficiency at these speeds. The comparison is shown in Figure 50. A reduction in efficiency of about 2 percent is indicated for the 2.3 degrees of collective flap deflection. This brings closer the agreement between analysis and experimental results. With the alleviation of wing stall in the transition, the power will drop off with speed as the induced power is reduced. At higher speeds, when the required thrust and advance ratio both increase, the efficiency will also increase. At 140 knots (the last series of points of Figure 8c of TN D2538) rotor efficiency was not investigated. A mechanical restriction limited the pitch angle to 26 degrees (which results in a negative thrust at this advance ratio), and the flaps were not fully retracted. These last points, then, are not the result of a thrust calibration, but are the incidental results of a test to investigate rotor blade flapping at high speed. 40 500 800 1000 1200 1105 1600 Shaft horsepassa, 300 Pigure 49 Thrust Calibration Figure 50 Tiples of Collective Clup Deflection On Besse Fifterency ## Control At the low end of the transition speed spectrum, the aircraft is controlled by propulsive-rotor cyclic lift. The magnitude is dependent upon cyclic sensitivity, which has been discussed in the "hover" section. A particular required control moment for low-speed control can be obtained from an optimum combination of blade design parameters. As speed increases, the cyclic control is phased out and the merodynamic surfaces take over. The complete equations of blade flapping motion are given in Appendix D, and the cyclic sensitivities for the present K-16B are shown in Figure 88. # Longitudinal The cyclic sensitivities of the wind tunnel tests are compared in Figure 51 with the results of an analysis from Appendix D, Figure 88. At the two lowest tunnel dynamic pressures the agreement is good, but at the two higher dynamic pressures the analytical results are conservative. The most likely reason for the conservatism is a variation of the cyclic inflow factor with forward speed. The factor used was derived from hovering control considerations. But in transition the induced velocity, which is modified by the cyclic inflow factor, is a smaller proportion of the total inflow. In Figure 52 control moments are shown as functions of the longitudinal flapping angle. They are presented as functions of the resulting flapping angle, a₁, rather than cyclic flap deflection, σ_{1L} , to remove the effect of scatter in the cyclic sensitivity. The control power from the analysis of Appendix P, Figure 88, is also shown. Fair correlation is evident, but with test results signifying a higher control moment per degree of flapping than does the analysis in the linear range. Test results (Figure 52) include the effect of the elevator. The analysis also does, but estimated values of $dC_m/d\sqrt{e}$ from KAC Report G-113-4 (9) were used. It is prudent to compare the estimated and the test values of this parameter. Figure 53 shows that the calculated elevator effectiveness (slope of curve) from Reference 9 is not too different from the results of Runs 33, 34, and 36 (Figure 31 of NASA TN D2538) (53), although the experimental value is slightly higher than the calculated value. Longitudinal Cyclic Semittivity Copies and feet And Acatetical Control Prichlag Moments Figure 53 Comparison Of Analytical And Test Values Of Elevator Effectiveness The increment in pitching-moment coefficient due to the elevator can be expressed as: $$\Delta C_{m_t}^{"} = \frac{dC_m}{dd_e} \frac{dd_e}{dd_1} d_{L} \left(1 - T_c^{"}\right)$$ (15) and; $$\nabla M_{f_{e}} = \nabla C_{m_{f}}^{m_{f}} q_{s}^{m_{f}} s_{s}^{m_{f}} q_{s}^{m_{f}} s_{s}^{m_{f}}$$ (16) or: $$\frac{dM_{\xi}}{da_{i}} = \frac{dC_{m}}{d\sigma_{e}} \frac{d\sigma_{e}}{d\sigma_{i_{l}}} \frac{1}{da_{i_{l}}} q'' S\bar{c} \qquad (17)$$ Substituting: $$\frac{d\sigma_{e}}{d\sigma_{i}} = .96 - .0192 \text{ from Ref. 9}$$ (18) $$\frac{d\sigma_{i}}{d\sigma_{i}} = .56 \text{ from Figure 88 for Run 19}$$ $$\frac{dC_{m}}{d\sigma_{e}} = .027/\text{deg from Pigure 53}$$ $$q = 11.2 \text{ for Run 19}$$ into the above equation yields 474 ft-lb/deg, which is but about 20 percent of the total control moment of 2200 ft-lb/deg that is developed. Of course, the elevator effectiveness increases with airspeed. The foregoing figures apply to an airspeed of 58 knots. During the elevator effectiveness tests, the controls could not hold the deflection against the airstream. The difference in moment slope, dM/da_1 , (Figure 52) is approximately equal to the loss in elevator effectiveness, $dC_m/d\sigma_e$ related through equations (17). This is an indication of control system deflections. Figure 52 also indicates an "out of trim" moment from tests with stick neutral. The "stick neutral" point of Run 19 on the figure shows a moment of approximately 11,000 ft-lb. (This is the same as shown in Figure 25 of TN D2538 for a lift of 8800 lb.) The calculated moment of 7000 ft-lb reflects the difficulty in estimating the drag of the various components of a stalled flapped wing, part of which is in the slipstream and part of which is not. Because of the influence of vortices shed by either end of the cross-shaft cover at the center section, both induced and profile drag of that portion of the wing are difficult to estimate without drag build-up tests. # Lateral-Directional In the K-16B, hover lateral control is obtained by differential blade pitch with lateral cyclic flapping to compensate for the residual yawing moment. As the wing is brought down in transition, the yawing moment component increases, so more lateral cyclic is required to compensate. Finally, the speed is great enough so that spoilers provide sufficient roll control and differential collective is phased out. Similarly, directional rotor control in hover is lateral cyclic with differential collective pitch providing the compensation for the residual rolling moment. As the wing tilt is reduced, the compensating differential collective pitch is phased out, for the rudder is becoming effective. Lateral and directional control excursions were made at a wing tilt of 40 degrees under conditions similar to Run 15 (Figure 51a). The lateral cyclic sensitivity would be expected to be identical to the longitudinal, but 90 degrees out of phase.
The results are displayed in Figure 54. A comparison of this figure with the lower half of Figure 51 shows a similar slope, although greater than the analytical slope. Calculations underestimated the moments, most likely as a result of a reduction in effective cyclic inflow factor, which reduction was neglected in the analysis. #### Pedal Deflection Pedal depression brings about lateral cyclic flap deflection and a compensating differential collective pitch to provide pure body-axis yawing moment. The body-axis yawing and rolling moments due to pedal depression are considered a function of lateral flapping in Figure 55. An analysis of the wing axis yawing and rolling moment shows substantial agreement with the maximum right rudder depression that was tested (Point 1). Pitch was measured on the right rotor only. For the left rotor, the differential collective pitch was determined using Figure 37. The experimental compensating differential collective pitch variation, shown in Figure 55, reveals substantial agreement with the design compensation (KAC Report G-113-4) (9) for right pedal depression. The residual rolling moment is small. For left pedal depression however, there was insufficient compensation and the residual rolling moment was high. A similar result was noticed in the static stand tests (Figure 39). This anomaly has not been investigated in detail, but may be due to asymmetry in compensating linkage adjustment. ## Lateral Stick The control input of lateral stick deflection is differential collective pitch with lateral cyclic introduced to compensate for the induced yawing moment. Figure 56 shows the rolling and yawing moments for lateral stick. The lack of accurate yaw compensation is immediately apparent (the negligible variation of bl flapping with differential pitch). The same thing was apparent in the hovering tests (Figure 40). The probable explanation is that so little compensating lateral cyclic is required, deflection or lost motion in the control system linkages prevented the correct cyclic flap input. In summary, rotor cyclic sensitivity and control power can be accurately predicted for hovering flight and low-speed transition flight (Figures 51, 86, 88). At higher speeds in transition, the analysis underestimates the experimental values. The reasons for the conservatism are not precisely known, but they are probably associated with a reduction in cyclic inflow factor. The analysis indicates the physical properties that determine rotor control power. By proper proportioning of these parameters, any reasonable amount of control power can be attained. Because the analytical predictions are conservative rather than optimistic, plenty of control is available and proper proportioning can readily be attained. The mechanical design of the K-16B airframe control system, however, would require stiffening, re-adjustment, and reduction of lost motions before it could be considered satisfactory for flight. # Forward Flight Flapping An articulated rotor minimizes the one-per-revolution root-bending stresses in the transition phase of tiltwing operation. But because the blades are hinged, in Moments Due to Lateral Stick Deflection Figure 56 forward flight they will flap back in response to angle of attack changes. It is important that this flapping remain within reasonable bounds. Figure 57 shows the results of the wind tunnel tests of blade flapping for the K-16B rotor. Because rotor blade longitudinal flapping effectively tilts the rotor thrust vector, the resulting vertical component is akin to the well-known normal force of a hingeless propeller. The results indicate that the slope $\partial_{A_i}/\partial_{\infty}$ increases with advance ratio J_H (see lines marked J_H = .25 and .40). But even at a J_H of 0.43 (137 knots) the longitudinal flapping is only about 1/3 degree per degree change in angle of attack. The principal reason for the low value of forward flight flapping sensitivity of the K-16B rotor is the relatively large flapping hinge offset. The centrifugal force moment about the offset flapping hinge acts as an effective spring that is proportional to the offset and the first mass moment. Therefore, the longitudinal flapping sensitivity is inversely proportional to the offset. The analysis in Figure 57 is that from Appendix D under "Transition Performance". It is general and valid for any value of inflow ratio, λ , and can be used for forward flight in- vestigations. A simpler analysis based on single harmonic flapping was used to construct Figure 85 to point out the effect of several blade parameters on the forward flight longitudinal flapping derivative. The figure shows that high first-mass-moment, flapping hinge offset, and pitch-flapping coupling all reduce flapping. The propulsive-rotor has demonstrated its potential to provide stable, powerful, positive control throughout the entire low-speed regime at a minimum power loss, fuel consumption, and weight. It does this in a unified propulsion/control package not requiring additional auxiliary control devices. This control system is analogous to the helicopter rotor cyclic control concept, operates in much the same manner, and produces comparable control forces and moments by cyclically deflecting a trailing edge flap in each blade. Collective deflection of these flaps provides variable camber blades that permit best compromise between static thrust and propeller cruise efficiency. Flapping freedom of the blades reduces out-of-plane vibratory bending stresses at the high angles of attack characteristic of VTOL and STOL transition operation. The concept was tested on ground bench stands, and in full-scale wind tunnel testing or a partially deflect-ed-slips tream, tilt wing airplane. The particular model, designed in advance of adequate aerodynamic and aeroelastic criteria, did not demonstrate the maximum potential of the propulsive-rotor. However, when correction is made for the non-optimum design of test hardware, the correlation of analysis with thrust and control data obtained at NASA, Ames Research Center, shows the validity of the analytical treatment of performance. Airframe problems were the result of either a nonoptimum configuration stemming from the limited basic data available during the design phase, but now correctible with straight forward design approaches based on currentlyavailable data; detailed hardware deficiencies which would yield to turther conventional development effort; or problems, basic to the VTOL configuration, which have been experienced in later programs, and on which research data are now available. The VTOL airframe is now quite well understood. The propulsive-rotor, however, is unique and still a valuable concept. Data from the K-16B program has been correlated with analysis and the analytical methods improved since the early design analysis. Present methods accurately check wind-tunnel performance and control results, and can be used for reliable parametric analysis of propulsive-rotors for operational use. Studies have resulted in a new rotor system design which resolves the problems that appeared in test hardware. Acrodynamic analyses show that the new rotor design will provide a sufficient margin of static thrust to assure adequate vertical flight performance of the K-16B, and that control performance will meet the requirements of Specification MIL-H-850lA. Recent developments in high-capacity, nonlubricated control bearings now make the propulsive-rotor concept practical as well as theoretically feasible. Dynamic analysis of a new flap retention and control system geometry show acceptable bearing P-V loads, and a very marked improvement in both fatigue life and in system stiffness. The airplane was designed to furnish an airframe whose size, design load factors, and performance characteristics were compatible to those required for an anticipated military mission. Structural analysis substantiated by test has demonstrated the ability of the K-16B to safely operate in the prescribed envelope. Wind tunnel tests at NASA, Ames Research Center, disclosed a rather severe wing stall buffet in transition with an unprotected leading edge. A leading edge modification that proved very beneficial on the 1/8-scale model did not improve full-scale results as significantly as expected. The problem appears to be endemic with the tilt-wing concept. One solution has been at least partially successful on the XC-142. Analyses have indicated how the stall of the K-16B wing can be alleviated or eliminated during transition both in level flight and at reasonable rates of descent. That the use of wing flaps tends to reduce transition stall has been well documented, but no entirely satisfactory method for analysis of the wing-stall problem has been developed. At the present, only wind tennel tests of a particular configuration can resolve the problem. However, as a result of the correlation between analysis and K-16B test data, it is believed that the analytical procedures are useful for initial prediction of turning angles and efficiencies. # REFERENCES _____ | . t . | | | | |-------
--|------------|--| | 1 | Discrete 1, 8 and matrix decree 1 may be a super-
cent of the Street in the Township by Chapter a
Bound Chemist to the Control of the super-
fer Violated Assessed 1, 2 may be accounted a
Sound to 27 April 1956. | 19 | Becompt, J.r., 8-168 Flight Loads , Kaman Air-
craft Corp., Sc. o 111-14, 11 April 1960 | | | | 30 | lovenza, J.F., CK-108 Ground Leads , Kamag Air-
craft Corp., No. G. 73-15, 8 April 1960 | | 2 | Contoning with the Contoning Contoni | .1 | Jabinotes, W., & ROD Maton Leady , Kaman Aircraft Conjes Soc 6 110 19, 8 April 1909 | | | | 83 | Lowerse, 3.5 . Load and Strees Analysis K-16B
Tapersesion Mount , remain Sitte of Coupe,
5-, collisel, 18 april 1900 | | 3 | Approximation of MACA and the form to the control of the Approximation o | .۱ | Hogener, J.S., Schine Analysis - R-16B Alighting Gard, Rabon Alteraft Corp., Sc. 6-113-18, 11 April 1969 | | 1 | 1. 241, 1998 Special Research Devices of the street of the Secretary and Secret | 24 | Discuss, J.E., and Regotiski, T.J., TK-16B wing strong Abalysis , Kasan Aircraft Corp., No. G 175-19, 13 unit 1960 | | | | 25 | Receivit, J.F., "K-16: Purchase ding Attach Loads",
Kan Attelaft Copp., No. o-113-20, 9 June 1980 | | 5 | resolves a solve of the first property of the August State of the Control of the State of the Control | 26 | Kalamines, I.M., Stream Analysis of the E-168
In the System . Randh Arroraft Corp., No. G-113-21,
28 May 1980 | | Ď. | | 27 | Jackson, N., Unit thears and Rending Schents -
A 161 sing's Assau Affernit Corp., No. G 113-22,
9 June 1900 | | 7 | rgotta, H. andress, J. 1888 of Bossach Special attended New York Entertheen 1986 of 1. Kaman Alexandr Cope. No. 6 10 17 30 June 100 1 | 26 | Roydlink: T.J., and Bosenzi, J.P., "Stream Analy-
eig - K-loB Nacelle , Kaman Aircraft Corp., No.
G-113-25, 21 June 1961 | | | Zong J., Methods of Analysis of Free Maps
Landing Canditions , Roban Assessed Corp.,
Mo. G.111 2, 12 December 1992 | 75 | Poslishers, P., "K-16B Kotor Stress Analysis",
Paman Aircraft Corp., No. G-113-24, 18 November
1960 | | 9 | Egertop, H.S., Rel Ctospant, by Nobup Styrow., Namen Artenatt Carp., No. G. 111.3, 12 September 2008. | 30 | the Editual, T.J., and Bovenzi, J.F., 'Streem Analy-
min - K-16th Functage , Kaman Airciaft Corp., | | 9 | Fitzwitting, J.E., Von. J., and double, G., Estimates Flying absolution of the knowledge left shot shot attraction. Among approximate probe to 1914. | 31 | Rogorioki, T.J., access Anslysis - E-166 Espean- | | 13 | 20 February 195:
Cimnmable, S., and Belios, E.s., 5-16P cmr disten- | Ji | ave', kaman Asiciaft Corp., No. G-113-26,
1: August 1980 | | | Ciannante, N., and Bellos, Bloc. No.16B calculated
Airloads Report , Keman AirCraft Corps., Soc
5-133-5, 15 July 1935 received 6 January 1900 and
To Jone 1900) | 32 | Figure 113, willish and Schoolt, Erich, 'Nechimical Instability Report, Kaman Aircraft Corp., So. G-115-27, 1 October 1869 | | 13 | Guerha, H.A., Thurter Analysis of the Kamen
#-188 VTOLINGUE Research Afteraft , Kamen Afteraft
Corp., M., G-113-6, 15 oktober 1969 trevisor
22 August 1900) | 33 | Green, Koungth H., "A-10B Terstendi Analysis",
Karen Aliccaft Curp., No. G-173-28, 16 March 1982 | | 12 | Zon, J. Gransante, S., and Fitzpatrick, J.,
Estimator Flying Qualities of the Karlos K. 6 | 34 | Egerting of S., Kodel K-168 V SPG Research Air-
plane - Final Report - Let 117, Assan Aircraft
Corp., No. G-114-29, November 1902 | | | VNOLSTON ARGERIC, Tart 31, because examinity in Transitional Flight, keen Archest exp., bec. 6-113-7, 20 November 1959 | 45 | trion from the Court of Cou | | 13 | whoseer, K., 'Mudel K-lon extinates well took
'Dalanse Report', Karas Aristall Corp., N.,
G-1955, 18 December 1959 | 36 | Fitzpotent, J., Jonattodonal Chemicteristics of
the Kelch Archael Sasco on 108-scale Model sind
Tamber Text Foreits, Japan Discort Verp., No.
(116-5), 26 November 1001 | | 14 | Bossler, R.D., Structurst Analysis of Start controls, Kaman Aleccatt Conj., Sc. 6 1(19), 21 January 3960 | 37 | Eggetton, P.S., Kodel K 16b Notopeop Fimp Controls
Emiliary 1981, August Sirvisit Corp., So. G-113-30,
1606 for 1962 | | 15 | Jones, H., 'Me hantial Ingentiality Analysis of the
Kanan h-16B VIOL STOR Research Alleraft', Kanan
Alteraft toops, No. 6-193-10, 15 January 1960 | 3 r | Empirical Disc. Fileb Lower and Drive Syst t Bench
Stam - Foundamy Tool , Raman Akicisti Corp.,
No. 6 Lic 34, December 1962 | | 36 | Constitues, M.B., and Bootstone, T.J., riccof load
font of the KIOS VOJ. STCF Resourch Asperbing
Fing for a Symmetrical Landing Applicach. For ac
Assertit Corp., No. 6-113-11, 10 March 1800 | æ | raction, H.S. Fig. 1 Kelob Rotoprog Fla; and Flap
hotoricon ballance Test., Assan Alteratt Corp.,
No. 1-210 Db, Asvenbor 1967 | | 17 | Gaidiner, M.H., and bosenzi, J.F., 1900f Load lest of the kinh VDB, NDU Remember Amphibian wing for a Symmetrical 3-both Loading', Remain Aircraft Cott No. G-113-12, in March 1960 | 40 | Gallando, Vincente Ji. 'Propel'er-Hacelle Whill
Flutter Analysis of thi K-Hel Amphibious VPOL/STOI
Anceraff', Kaman Altereft Corp., No. G-113-41,
August 1962 | | 16 | Ggrdiner, M.B., with Schooler, R., Princh Lead fabits of the AleS VPQ Shir Research Appathian Control Spurmer, Kaman Alicraft Corp., No. G-113-13, 15 July 1960 | 41 | Fay, C.B., 'A trapery Analysis of the VTOL Tilt-
eing Ferformance and control Problems', Anna's
of the Ss York Account of Sciencia, Vol. 107
Art. 1. March 1860, pp 102-146 | - 42 Anderson, R.C., and Blackburn, W.K., "Ground and Flight Test Evaluation of the Haman Modified Servo-flap Rotor System", Raman Aircraft Corp., No. T-80, 15 June 1985 - 43 MnCoubrey, G.a., and Michel, D., "Analytical Study of a Modified Elman Servo-Controlled Rotor System with
Results from Small Scale Model Tests", Kaman Aircraft Corp., G-63, 19 December 1952 - 44 Gamble, R.P., and Rollrock, R.H., "Report of Preliminary Tests of the Easan Aircraft Corp., G-51, 24 June 1953 - 45 Binnelskamp, H., "Profiluntersuchunger on einen Imlaufenden Propeller" (Profile Experiments on a Rotating Propeller), Thesis Gottingen (1965), Reports or the Max Planck Institute, Gottingen, Rotanber 1980 - 80 Sucheean, D., "Types of Flow on Swept winge", Journal of the Royal Aeronautical Society, Vol. 57, No. 815, November 1955 - 80 Burgan, Elmer T. and Matthews, John T., "find Tunnel Tests of a 1/8-Scale Powered Model of the Engan 1-168 YTOL/YTOL Airplane', Navy Department, David Taylor Model Sasin, Asro Report 98-Problem Assignment 1-32-06, February 1961 - 48 Relly, John A., "Effects of Modifications to the Leading Edge Region on the Stalling Characteristion of the NACA 83,012 Airfoll Sections", MACA TH 2228, 1850 - 48 Harris, T.A., and Lowry, J.G., "Pressure Distribution Over an MACA 23012 Airfull with a Fired Slot and a Slotted Flap", NACA TR 732, 1942 - 80 A'Harrah, R.C., "Results of a Pilot Evaluation Study of the Flying Qualities of the Easan E198 Airplane", Borth American Aviation, Columbus Divisios, MASOS-672, 31 October 1980 - 81 Anon, "Estimated Flying Qualities of Haman Model E188 TTOL/STOL Aircraft as Provided by the NAA Bimulator", NATC Patusent River, Report No. 1, Final Report, 21 September 1960 - Felabella, G. W., and Meyer, J.R. Jr., "Determination of Inflow Distributions from Experimental Aerodynamic Loading and Blade-Motion Dats on a Model Melicopter Rotor in Howering and Furward Flight", NACA TN 3492, November 1955 - 83 Weiberg, James A., and Guilianetti, Demo J., "Wind-Tupnel Investigation of a Tilt-Wink WTCL Airnlane with Articulated Rotors", NASA TN D-2538. Warch 1863. - Egerton, H.S., and Gianeante, N., "A Study of the Feasibility of using a Semi-rigid or Articulated Rotor on a Tilt-sing FTOL Aircraft", Wright Air Development Conter, Wright-Patterson Air Force Base, #ADC TRSS-34, October 1957 - 85 Euho, Richard S., "Semi-empirical Procedure for Estimating Lift and Drug Characteristics of Propeller-Wing and Flap Configurations for Vertical and Short Take-off and Landing Airplanes", NASA Meso 1-16-591, 1959. - 56 Harris, T.A., and Purser, P.E., "Wind Tunnel Investigation of an MACA 23018 Airfoll Section with Two Sives of Balanced Split Flaps", MACA Wartime Report L-461 (ACR Novseber 1940) - 57 Lowry, J.G., and Polhamus, E.C., "A Method for Predicting Lift Increments due to Plap Deflection at Low Angles of Attack in Incompressible Flow", NACA TN 3811, 1957 - 88 Weiberg, James A., "Static Stand Tests of the Kaman K-16B Airplane", Memorandum for Director, MASA-Ames, August 17, 1862 - 59 Anon, "Ouide for Planning Investigations in the Ames 40x80 Foot Find Plannel", NASA Ames Research Center, January 1867 - 60 Genow, A., and Crim, A.D., "A Method of Studying the Transient Blade Flapping Behavior of Lifting Roters at Extreme Operating Conditions", NACA TN 3366, 1955 - Sikorsky, I A., "Correlation of Helicopter Performance Equations". Paper presented at 25th Annual Moeting of the Institute of the Aeronautical Sciences, January 28-31, 1957, IAS Preprint No. 694 - 62 Eeyer, J.K., and Falabella, G., "The Effect of Blade Mass Constant and Flapping Hinge Offset on Maxisum Blade Angles of Attack at High Advance Ratius", Proceedings of the Sth Annual Forus of The American Helicopter Society, May 15-17, 1952 - 63 Gessow, A., and Myers, G.C., Aerodynamics of the Helicopter, MacMillam Co., New York, 1951 - 84 Resder, John P., and Whitten, James B., "Some Effects of Varying Damping in Pitch and Holl on the Flying Qualities of a Single Rotor Helicopter" NACA TM 2689, 1952 - 65 Crim, A.D., "Novering and Low-Speed Flying Qualities of VTOL Aircraft", Navy Department, Bureau of Asronautics, Research Div., Report DR-1886, April 1958, pg 2 - 86 Salmirs, Seymour and Tapscott, R.J., "The Effects of Verious Combinations of Damping and Control Power on Helicopter Handling Qualities During Both Visual and Instrument Flight", NASA TN D-58, October, 1959 - 67 Tapscott, E.J., "Criteria for Control and Response Characteristics of Helicopters and WTOL Aircraft in Howering and Low-speed Flight", Institute of Aeronautical Sciences, Paper No. 60-51, 1960 - 6h A'Harrah, R.C., and Relatowski, S.F., "A New Look at V/STOL Flying Qualities", Institute of Aeronautical Sciences, Paper No. 61-62, 1961 - Kubs, Richard E., and Draper, J. W., "An investigation of a Ving-Propeller Configuration Employing Large-Chord Plain Flaps for Low Book Flight and Vertical Taxoff", NACA TN 3207, 1986. Figure No. Page | P/P | K-168 at Rollout | | 42 | Vector Diagram Showing Control | | |-----|---|--------|----------|--|------------| | 1 | General Arrangement | 11/126 | | Moment Distribution | 92 | | 2 | Peasibility Test Stand | 13 | 43 | Wing Attitude Angle for Level Flight | •• | | 3 | Aerodynamic Research Test Stand | | | Transition | 94 | | | Without Groundboard | 15 | 44 | Comparison of 1/8-Reals Model and Full- | - | | 4 | Aeredynamic Research Test Stand | | | Scale Aircraft Test Results | 90 | | | With Groundboard | 15 | 45 | Wing Stall Patterns | 97 | | 5 | 1/8-4cale Wind Tunnel Model | 18 | 46 | Lift and Drag Characteristics | 98 | | 6 | Tie-Down Operation | 20 | 47 | Korsepower at Drag Balance | 100 | | 7 | Thrust Stand Installation | 21 | 48 | Extrapolation to Normal Gross Weight | 100 | | 8 | Full-Scale wind Tunnel Installation | 21 | 49 | Thrust Calibration | 193 | | 9 | Vibration and Flutter lost | 25 | 50 | Rifect of Collective Flap Deflection | •00 | | 10 | Wing Proof-Load Tests | 27 | | on Rotor Efficiency | 103 | | 11 | Blade-Flap Fatigur Yest | 3 U | 51 | Longitudinal Cyclic Sconitivity | 106 | | 12 | Diade-Flap Control Fatigue Test | 30 | 52 | Comparison of Test and Analytical | 205 | | 13 | Power and Drive Endurance Bench Stand | 31 | | Control Pitching Momenta | 106 | | 14 | Basic Blade Hover Performance | 37 | 5.3 | Comparison of Analytical and Test | | | 15 | Blade "A" Hover Performance | 37 | | Values of Blowstor Effectiveness | 107 | | 16 | Blade "B" Hover Performance | 37 | 54 | Lateral Cyclic Sensitivity | 110 | | 17 | Hover Capability | 3н | 5.5 | Noments Due to Padal Depression | 110 | | 18 | K-13P High Speed Performance | 38 | 56 | Moments Due to Lateral Stick Deflection | 112 | | 10 | ≥ropulsive Rotor Performance | 39 | 57 | Rotor Forward Flight Longitudinal Flapping | 114 | | 30 | Schomatic Force Diagram - Static | | 58 | Exploded View of Propulsive Rotor | 127 | | | Thrust Stand | 55 | 59 | Propulsive Rotor Assembly | 127 | | 31 | Shaft Hornepower - Compariso of Analysis | | 60 | Notor Hub | 128 | | 22 | and Tent Data | 57 | 61 | Svachpiate | 128 | | | Celculated Rotor Radial Distribution | 58 | 62 | Drive System Schematic | 129 | | 23 | Turning Angle and Efficiency (Static | | 63 | Wing Structure Internal | 130 | | 24 | Test Results) | 60 | 64 | Wing Structure External | 130 | | 24 | Variation of Aerodymanic Characteristics | | 65 | Spoilers | 131 | | 25 | With Total Engine Power | 61 | 66 | Nacelle | 131 | | A., | Variation of Lift and Drag With Total | | 67 | Function Pylon Framing | 192 | | 26 | Engine Power | 62 | 68 | Wing Tilt Trumpions | 132 | | 20 | Lift and Drag Coefficients Corresponding to | | 69 | Thrust Stand Assembly | 136 | | 27 | Faired Turning Angle and Efficiency
Variation of Drag Coefficient and Hull | 66 | 7.1 | Main Gear Load Cells | 137 | | | Angle of Attack With Lift Coefficient | 66 | 71 | Tell Gear Load Cell | 137 | | 26 | Effect of Lift and Drag Coefficients on | 00 | 72
73 | Remote Control Console | 136 | | | Slipstress Turning Angle and | | 74 | Control Input Actuators in Cockpit | 138 | | | Efficiency | 68 | 75 | Installing on Thrust Stand | 139 | | 29 | Comparison of Cyclic Sunmittivity | 71 | 76 | Thrust Stand Installation Complete | 139 | | 30 | Comparison of Experimental and Analytical | • • • | 77 | Thrust Stand Operation - Wing Down | 141 | | | Pitchina Moment | 7.3 | 78 | Thrust Stand Operation - Wing Sp | 141 | | 31 | Power for Cyclic Control | 75 | 79 | Wing Trunnion Fitting | 142 | | 32 | Comparison of Cyclic Sensitivity With | *** | 80 | Engine Mount Support Fitting Installing in Tunel | 142 | | | Lateral Flapping | 77 | 81 | Installation Com: ete | 143 | | . 3 | Lateral Control Characteristics | 79 | 82 | Tunnel Operation | 143 | | 34 | Control Motion With Lateral Stick | | 83 | | 144 | | | Sucuration | 81 | 84 | Static Thrust Performance Analysis | 154 | | 35 | Variation of Thrust and Torque With | •• | 85 | K-16B Rotor Transition Performance | 158 | | | I-la to Liten Analysis | H2 | G | Effect of Blade Characteristics on | | | 36 | Vector Pingram Analysis of Lateral | | | Longitudinal Flapping in
Cruising Flight | | | | Control Nomenta | 83 | 86 | Civilia Sensitivitary and Object to a | 155 | | 37 | Increment in Differential Collective | | • | Cyclic Sensitivity and Phase Angle
Relationship | | | | at Actuator Due to Blastic | | 82 | Rotor Control Moment Sensitivity | 161 | | | Deformation | 84 | 88 | Rotor Control Sensitivity | 164 | | 38 | Lateral Control Amelysia | 88 | 88 | Handling Qualities Boundary Prom Tagecott | 172 | | 39 | Directions: Control Characteristics | 88 | 90 | Habiling Gualities Boundary From A'Marrah | 173 | | •0 | Wing Axis Moments Due to Pedal Deflection | 80 | 9) | SAC Charte | 174 | | 41 | Vector Diagram Showing Directional | | 92 | Transition Acceleration and Deceleration | 175
176 | | | Control Analysis | 91 | 93 | Time History - Single Engine Recovery | 177 | | | • | | 94 | K-16B STOL Take-Off | 177 | | | | | | | 111 | | | | | ₹ | |-----------------------|---|----------------
--| | • | perpendicular distance between sing chord line
and rotoprop shaft conterline, ft | c _T | thrust coefficient, EWR's (AR) | | • | lift-curve elope | cx | longitudinal force coefficient, | | ٠. | angle between rotor thrust vector and rutur resultant forcu | c _z | rotoprop normal force coefficient normal to relative wind at infinity | | 41 | longitudinal flapping angle, rad | D | rotoprop diameter, ft | | •0 | rotoprop coming angle, rad | | • • | | b | wing mpan, ft or number of blades per rotor | dę | perpendicular distance from the thrust line to
the elevator hinge line | | 8 | number of blades | • | flapping hinge offset, ft, or soan efficiency factor | | υ _e | portion of wing span immersed in elipstream, ft | r | flat plate drag area | | bţ | horizontal tail span | | rotor longitudinal force (L thrust) | | ι_1 | lateral flapping angle, rad | н. | elevator, rudder and apoiler hinge moments | | c | wing caord or rotor blade chord, ft | Hr
Hr | everyor, radge, and sporter nings mosants | | ۲, | elevator root sean equare churd, ft | D is | .• | | ਰ | wing mean serodynamic chord, ft | 1, | retoprop blade flapping moment of inertia friden | | C _w | wing choid directly behind rotoprop | | \$10g\$ 1t- | | c. | average wing chord immersed in alipatream | IYR | rotoprop blade product of inertia $\int_0^K y r dr^n$ slugs ft^2 | | c, | section lift coefficient | | eluge ft ⁴ J ₀ | | c _{do} | section profile dreg coefficient | it | burizontal tail incidence, deg | | ς _D | drag coefficient, D | ı | jet thrust | | 70 | 42 | _ | v | | c _{Ds} | drag coefficient on wing in blipstream | J _H | rutor forward flight advance ratio, AR | | ٠. | drag confelicioni D | K ₁ | vs ratio of velocity at a point in the | | C ^D | drag coefficient, 3 | | elipstream to theoretical velocity in developed | | գ | lift coefficient, 45 | | # # # # # # # # # # # # # # # # # # # | | C _L | lift coefficient on that r rtion of the wing in | ĸ | factor accounting for cyclic inflow through the | | | slipstream | | rutoprop disc, $\frac{1}{1 + \frac{\partial}{\partial \mathbf{q}} \left(-\lambda + \frac{\mathbf{c}_{\mathbf{r}}/\mathbf{q}}{\sqrt{\lambda^2 + \omega^2}} \right)}$ | | CL N | lift curve slope, ac. | | $1 + \frac{G}{G_{\bullet}} \left(\lambda + \sqrt{\lambda^2 + \mu^2} \right)$ | | | * - | ١, | horizontal tail length, ft | | CLt | lift coefficient of the horizontal tail | ı. | 14ft, 16 | | c _L " | lift coefficient, | l, | vertical tail longth, ft | | | l | r, | rolling-moment, ft. lh | | G* | wing lift coefficient, | l, | distance from wing mean sevedynamic center to rotor hub, ft | | c | rolling-moment coefficient, 455 | ¥ | pitching-moment, ft. 1b | | c _H | Fotor longitudinal force coefficient | No. | wing pitching-moment at zero angle-of-attack, | | °H | - | 0, | ft. 1b | | C ^{ID} | pitching-moment coefficient, as | MI | hull pitching-moment, ft. 1b | | <u></u> | pitching-moment coefficient increment of the hull | Met | rotor hub moment, ft. 1b | | C∎(| p.tching-moment coefficient increment due to the | N | number of propellers | | v a (| horizontal tail | N ₁ | engine gas generator RPM | | CM | pitching moment coefficient, | N2 | engine power turbine RPM | | ٥. | yawing -moment coefficient | n | yawing-moment, ft. 1b | | c _n | | n, | normal acceleration | | Cng | increment in yawing-moment coefficient due to rotoprup operation | ч | free sticam dynamic pressure, lb/mq. ft. or pitching velocity, rad/mec | | $\Delta c_{a_{\psi}}$ | increment in yawing-moment coefficient due to vertical tail | | | | | _ | q" | q + T | | C. | torque coefficient. | | - 40 | QRos R resultant dynamic pressure at the propeller disc horizontal tail angle of attack, deg hull angle of attack, deg vector sum of q and $\frac{T}{4\pi\,R^2}$, the q_q is blade flapping angle resultant dynamic pressure at the wing scrodynamic Leck's in , $\frac{c_{ac}R^4}{I_i}$ center. Vector number q and $-\frac{k_{1}^{(B)}T}{\tau r/R^{3}}$ lb my ft propeller collective flap defication, rad average dynamic pressure at tail, 16 sq. 15 propoller longitudinal flap defluction, rad rotor blade radial station, it propeller intermi limp deflection, and, or engine inlet pressure to standard ambient pressure ratio rotor blane tadius ft prich-flapping coupling angle wing area, sq ft longitudinal seach plate deflection rad. reference area for functage coeffit, rents wing area in the elipsticass, aq.ft clevator deflection, deawing mrom outside the elipstreams, sq. II 1. wing Fowler thap deflection, deg horizental twil area rudder deflection, deg vertical tail area spoiler defliction, deg throst. 10m flap lift effects eneme delivative. linear twist, dess or rad æ1 thrunt coefficient, T downwash at tailplane, power off, deg tilade saun factor. $\frac{(\sqrt{n}/R)R^k}{I_k}\int_{\frac{R}{R}}^{1}(x-\frac{N}{R})dm_k \qquad (ref. 6)$ inter-efficiency threst coefficient, $\frac{1}{q^n \, \pi \, R^n}$ T." 'n horizontal tail officiency factor velocity in alignment at wing a vertical tail efficioncy factor ٦v aircraft weight binge pitch angle, deg. fuel flow, lbs hr wing flap alipatress turning angle longitudinal force. 16 wing straightening factor nondimensional blade radial atation rotor inflow intio imboard end of propeller flap as percent blade radius rotor advance ratio perpendicular distance from wing merodynamic center to center of gravity *CG propeller flapping hinge offset, distance along shaft line from propeller hub to center of gravity, ft. ≥h All density propeller solidity raise Y perpendicular distance from wing chord plane to center of gravity, ft. wing-hull tilt angle, des. z_{∞} angle between rotor resultant force and free atress volcenty perpendicular distance from proceller shaft lim to center of gravity, ft. angle between wing chord line and free stream velocity for steady level flight, deg. body sxis system propeller blade sutlow angle wink axis system rotor azymuth so, le from downstream in direction of rotation augle of attack, dog. angle of attack of wing in wlipstream, deg totor sommitteesh speed, and sec. # APPENDIX A PRINCIPLES OF PROPULSIVE ROTOR CONTROL Ruserous V/STOL aircraft have been and are contimuing to be evaluated by the Military. A recurring wroblem has been that of securing adequate control in over and transition. Repeatedly, control power alone has been obtained by auxiliary devices, frequently with # Equilibrium Condition - Thrust vector is perpendicular to tip path plane and along denter line of shaft - Centrifugal forces on the mass of the blades cancel. #### Cyclic Control Causes the Rotor to Tilt - Thrust vector tilts in direction that the tip path plane tilts, causing an increment of thrust on the hub perpendicular to the shaft sais, which is used as a control force. - Because one side of the rotor flaps down and the other flaps up, the centrifugal forces acting on the offset flapping hings of the blades have different moment arms. This causes a hub moment in the direction that the rotor tilts, about an axis perpendicular to the shaft axis. Cyclic Control Principle limited success. The propulsive rotor eliminates the need for any such auxiliary devices. All three modes of rotorio are inherent in the rotor. The following pages contain an explanation of the forces and summents that are generated by it. #### Equilibrium Condition - 1. Thrust is fixed at a certain - Torque is also fixed and the direction of the moment is opposite to the direction of rotation of the rotor. # When Collective Pitch is Increased - Thrust increases giving a pumitive increasest of thrust (dotted line) perpendicular to and easy from the tip path plane, and which is used as a control force. - Torque increases giving an increment of soment (broken line) about the shaft axis opposite to the direction of roter rutation, and is used as a control soment - The eliptream velocity of the mir from the rotor increases, causing an increase of the lift (up force) at the wing (shown later). # When Collective Pitch is Decreased - Thrust decreases causing a negative control force incresent into the tip path plane. - 3. Torque decreaces causing control moment in direction of rotation - Velocity of alipstress sir over sing decreases causing reduction of lift or a d wn control force on sing. Collective Control Principle These are the heate sources of control. To con plete the picture, the controls must be related to the airplane as a whole. But the problem is complicated by the fact that the direction and magnitude of the control forest will change in the transition from hovering to forward flight. During transition, the control mement ages rotate with respect to the body axes which must be controlled. The control system must be programmed to combine the forces along, and moments about the control sween teams into pure forces and moments on the body axes. This means that both the body axes and the control moment are must be considered, it is necessary to separate the sing from the cirplane to understand the control moments that can be applied to it. The three control swee of the wing are Control moments about an axis can be applied either by a moment on another axis (such as a shaft axis) parallel to the axis, or by a force at a given moment arm distance. Por momenta about the roll atte, X'; Under equilibrium conditions, the thrust is equal on both rotors, and the torques are equal but in opposite directions. Rall control is obtained by differential collective pitch. When rolling left-wing up, right-wing down, the thrust on the left rotor is increased and that on the right rotor decreased an equal amount. The differential torques are additive in the masse direction. There is also an increase in lift on the left wing unit a corresponding decrease in lift on the right wing
(due to milpstress) yielding a moment in the same direction (A-A'). If spoilers are used, the right wing spullers are extended, causing a further down force on the right wing, and therefore a moment in the same direction. The total rolling moment is the vactor sum of these moments. For moments about the pitching axis, Y^{\star} ; Pitch control is obtained by longitudinal cyclic control which tilts both rotor tip path planes in the same direction. If the tip-path planes tilt so that the thrust vectors point up, the wing pitches leading edge up. The two upward increments of thrust (A-A') cause a moment about the pitch sais because they act at a moment are distance about of the Y's zis. The hub soments (B-B') act is the same distriction and add to the thrust moment to give total pitch control moment. A residual up-force (A-A') is cancelled by the loss in lift on the wing (C-C') because of the change in angle of stack from the tilting of the rotor. For moments about the wing yew gain, I': Yaw control is attained by lateral cyclic control. Here, both rotors tilt in the direction of yaw. In the same manner as pitch control, the sideward increments of thrust (A-A') and the bub moments combine to yield a total control moment about the yaw axis. These, then, are the basic sources of control about the three wing asse. To complete the loop, the controls must be related to the aircraft as a whole. When the wing is dcan, its three asses are parallel to the aircraft atability asses, and, therefore, the wing control moments can apply to the aircraft controls mously as well. But when the wing is tilted, the wing and sircraft axes are no longer parallel. As can be seen in the following sketch, the stgbility axes of the sirplane (solid lines) are located through the centor of gravity; also, the Y and Y's axes are still parallel. Hence, momenta about the sircraft pitch axis will produce pure momenta about the sircraft pitch axis. But the X and X's axes, and the T and E's axes are displaced from each other by the angle of wing tilt, 7. Differential thrunt produces a moment about the longitudinal axis that is perpendicular to the resultant thrust vector. If T- 90°, this will be pure rull about thrust vector. If / = 90°, this will be pure rull about the body axis. If the fuestage has an incidence angle, roll will be with respect to earth axes, causing accepantive yew coupling (right yew with right rull). Thus, differential collective pitch will give marrly pure rulling moment, so long as we keep the body level. There will be an induced yew due to differential tolque (which will depend upon the direction of propeller rotation) and to differential wing lift (because of elipstream). At partial wing it, there is also an induced yex. In any case, the yaw is compensated by the accomatic introduction of directional control. With appropriate programming differential collective pitch will result in pure rolling moment for any combination of tilt and elipstream turning. Lateral cyclic produces a moment in the plane of the propeller minft sale. At 90° tilt, it is jure roll; at 45° tilt it is prestively-coupled roll and yes of equal-magnitude. At 90° tilt, lateral cyclic can be used for conjunction with differential collective pitch to augment roll contiol. This will require less extra propeller throat for equal control. The advantages will be less power transfer across the interconnecting shaft, and the possibility of higher design $C_{\overline{1}}/\mathfrak{O}'$ for the proposition. The mide force accompanying the reliting moment is also advantage one, for it will produce translation with a reduction in angular rotation. At 90" tilt, yew control can be produced by differential longitudinal cyclic and or differential wing flap. A commination wight be optimum. Out of ground effect, wing slipstream atraightening reduces the affect tivenesm of differential longitudinal cyclic. In ground effect, alipstream appeading makes differential wing flap ineffective. A coadination can be made that would be fairly constant with altitude. If partial tilt is used, about 45° is maximum for good yaw effectiveness from lateral cyclic. But there will also be positive roll coupling. This will call for the introduction of differential collective to balance the coupling. Differential wing flaps will also produce yes, probably with small negative roll coupling. These might be a combination of lateral cyclic and differential wing flap that will give pure yaw, depending on the airframe dustyn geometry. The K lth used s partial till concept. As noted earlier, only about 18" of slipstress deflection was finally obtained, requiring the wing plane to assume an attitude of approximately 74" in hover. At this high attitude, lateral cyclic produced mainly rolling moment; thus, directional countrol of the sireraft was inadequate. Design changes would be required either to increase slipstiess cellection to permit tilt angless of the order of 45°, or to change directional control from lateral cyclic to differential longitudinal cyclic plus wing flaps. An interconnect between the wing and the control system determines the routing of pilot control inputs. Thus, in the wing-does praition, the rotor cyclic control is divorced from the control inputs, and the pilot operates the serudynamic surfaces, As the wing is tilted, the interconnect actuates a Emman-patented linkage that proportionally changes the sense of direction of the pilot's control inputs, permitting control to the rotor. In the K-15m, this also decreased control to the rudder and elevators. #### APPENDIX B VEHICLE DESCRIPTION _ The R-16R configuration consists of a partially filting wing mounted on a modified JBF 5 f rolege. The general arrangement is shown in Figure 5, vi yage. I neach of the wing mounted navelles is installed a YIM GEO engine. To keep the sugines within their qualified flight envalupes at the wing is tilted, they are installed at a 35 degree nowe down attitude. Through a reduction gestion each engine drives a propulsive role. The power and like oyetes in each neight gate; the avoiding a sertion separation for the wing leading edge, the avoiding a sertion separation of the expension of the second of one engine fallure. The vertised major structured and dynamic areas are briefly described in the following paragraphs. A summitty of pertinent disensional characteristics will be found at the end of this appendia The propulsive roter is a 15 ft 2 in diameter, three bladed system. Disc leading is in the order of 25 leb/ft2. Variable chaber to provided in the firm of deflectable trailing edge flam on the blades, permitting the best compression between attituthors in hower and propelles cruses afficiency. Ziepping freedom within -20 degrees, and a toned restraint by Belleville springs in leading are provided. Outboard of the flapping hinge is a blade feethering hinge. The only significant departure from current helicopter rotor practice lies in the relatively small dismester and ligher operating speeds employed, present maximum order publing 723. The rotors, where is a figures as and 59 rotate in opposite directions to cancel turque The sirfull section is an NACA 16-309 suddited in the flap area, and is constant from Blade Sta. 42 to tip. Flade chord is constant at 18 to, with a spanwise washout of .3387 degians per inch. The subserged flap has envelope of 60 percent of blade chord and 57 percent actual blade span. The hub (Figure 60 is composed of two Tianged plates mechanishly joined together by hold attachment to a spindl disp-med on the centerline of the assembly. At 10 percent of rotor radius and equally disposed at 120 degree are three universal crosses each relained in the hub Alesshly by a double-run tapered roller beging in the lower plans and a needle bearing in the upper plate, blade flapping cure around one axis of this cross, lend-lag about the other. The rotor control system Lournovates a swamplate (Figure a) sounded on the propertor shoft. The swamplate consists of a stationary member in which is mounted a rotating member, the sacrebly in turn is sounted on a spherical ball seat sacrebly on the propertor shaft. Both cyclic and collective control of the rotor reserve pli-had by displacement of the samplate, the wamplate motion is translated through appropriate linkages into motion of the blace fisps. Angular d'splacement of the samplate results in a singuished by the first setting as the rotor revolves. Fore and all despise species of all three flaps that is not affected by rotor revolven. A schemetic diagram of the drive system is displayed in Figure 52. The engine is institled at a schemeplayed in Figure 52. The engine is institled at a schemenose-down attitude to keep at within its qualified flight envelope as the wing is tilled. This requires an intermediate gearbox to permit drive into the main transmission because structural considerations prevented functilling the engine so that it could drive directly into the sain bux. The intermediate gearbox ateps up the engine type of 6000 in hover to the main grarbox input rpm of d500. The stages of reduction - the first a 2.31 a pur-gear seem, the second a 4.31:1 planetary traja - reduce the input rpm to the 725 rotor rpm is hover. On the main bux input unsaft is installed a conventional aprag-type fice sheeling unit which sulfestially disengages the engine in the event of an engine failure. Opposed hand rotation of the return is secured in the first stage reduction by sudding an idler gest in the apur gear train in one how. Other than that, both left-hand and right-hand drives are identical. The two sain buxes are interponnected by a a ross- The two main boxes are interconnected by a cross-shaft in the leading edge of the sing. Two spired boxes gair meshes, a lower and an upper, together with a vertical shaft in the main box complete the interconnection A 725 rps the cross-shaft rps in 3200. Driven by this cross-shaft shaft rps in 3200 below
by this cross-shaft shaft shaft rps in 3200. Driven by this cross-shaft shaft shaft rps in 3200 below by this cross-shaft shaft shaft restricted in an accussory-drive gearbox. The qualified flight envelope of the YTSE OEE engine has resulted in an unusual inscallation. With a possible sing steady state in the order of 70 degrees in horse; installing the engine at a 35 degree nose down attitude kept it within 5 degrees of the qualified 30 degree nose up, which was considered acceptable. The qualified nose down attitude in 65 degrees. We had considered in within the engine in the free large of the horsespower through long dive sladin vanilled in .everal design difficulties in the areas of weight, whefting, couplings, and bearings Uniformostly, the final power and drive nystem had imposed on 11 a moster of uniformerable extraneous problems burstude of the unitable installation (RAC Rejects 0 11: 29, and odd). #### STRUCTURE The sing dissign is conventional, consisting of a talk and distributed flatge the wheel said a soluture. In general, the criteria for VV class alteraft (MI A 8620) were used for similarly design. The wing is sheen in Figure 61 and 66. For accutated simplicity reasons in the sing till axis at approximately 80 process. We be provided to have the wing till axis at approximately 80 process. We be provided to be provided to account the wing till axis at approximately 80 process. We be provided the control of the provided the said bonding account. These parties also results in a seg- For ty put out mean chord Fowler flaps, one asgment inheard and one segment outleard of the navelle, are in stalled, Each flap in a built-up sheet setal etructure using formed space and tibe with sheet setal skin. Fing motion is programs d by the classical two-track system The sessions for using a sing-flap combination have been enumerated. For the Kids the system was designed to provide a maximum wing fune-legs angle of 64 degrees when it howeving flight. Our approach considered too afternatives one, 90 degree wing tilt; two, a reseconshe degrees of sligatrees turning and partial wing tilt. We chose the latter. Though there is a turning lose associated with sligatrees deflection, and the rotor vertical force a component of thrust (rather than full thrust at 90 degrees), the initial lower tilt was easiected to aid in reducing transition stall. He were also confronted with an esgine insmallation problem. Spaile, w. naed for roll control, are simple builtup sheet metal errocture and extend from Fing Sta. 57 to the tip (Figure 65). They are localled as three interconnected segments inheard of the ascelle, two interconnected segments outboard of the nacelle, and an "assist" spoiler segments note and the saccile, and an "assist" spoiler there are the resulting edge, the others at their leading edges. The na, ells (Figure 68; is of sent-monocour construction of the concentrated flange type, consisting of four corner longerons, two upper longerons, and transverse frames. The sections are used as panel breakers. Eaching fittings provide for sing and transmission mounting and for engine tractallation. A surplus JRF-5 fuselage was modified to accom-date the fill-bing. The wing renter section was removed, and the fuselage frames in the area strengthened and extended to form support pylons for the tilt-bing (Flaure 6). A fixed center-section trailing edge bridges the pylons, forming a bent. To the frunt spar of the bent are attached two wing trunkion fittings about which the wing tilts offigure 68). As in the original JRF-3, the K-168 employs tip-floats to furnish a hewling righting moment. However, the stationeem in a till-wing sireraft is not that simple. With a 601id attachment of float-to-wing, as the wing is tilled the float will depart from its heel-stability waterline position. Thus, as in the K-168, one float struct must be extensible and programmed to wing tilt to amintain the original heel-atability position of the float. #### PLIGHT CONTROL : YETEM One of the fundamental criteria antablished by Kaman for any proposed V'STOL sireraft required that the pilot's controls be simple, conventional, and devoid of any unusual characteristics calling for special pilot shills. Although the E.168 concept centers on the combined control features of an airplane and a belicopter, the controls presentation to the pilot and the technique for their operation are nearly identical with those of consentional simplenes. The pilot's basic controls consist of a Figure 58 Exploded View of Propulsive Rotor Figure 60 Rotor Hub Figure 63 Wing Structure Internal Figure 64 Wing Structure External Figure 65 Spoilers Figure 66 Nacelle Figure 67 Fuselage Pylon Framing Figure 68 Wing Tilt Trunnions single stick, rudder pedale, and thrust control. The controls presentation is substantially the same as that found in any suitt engine fixed sing sircraft except for the substitution of a stick in place of the JRF wheel at the right-hand station. This change was made at the request of the company's test pilous who felt that stick control, being similar to that of a helicopter, would similar a first flight variable. A report of an informal cockpit mochup revisu is presented in KAC Report G-113-3 (8). Both roll and pitch control, whether hel copter or fixed wing, are secured with either the stick or the wheel. Yaw control in both regimes is obtained with conventional pedals. On both the stick and the wheel is a beeper switch that controls wing tilt. On a centrally located commode are two conventional engine-condition control levers and a rotor-thrust control lever. In the airplane regime this latter control performs essentially the sawe function as does a throttle. In the helicopter regime it is used to control rotor thrust to maintain slittude and is in fact collective pitch. At the aft end of the commode is a conventional wing fisp control. On the thrust control lever is a "beeper" switch by which the pilot can phase in or out the degree of rush control-mensitivity. Although in operational aircraft rotor control-mensitivity could be programmed by wing tilt, or wing flap, or muse other and suitable parameter, it is advisable that in rosearch aircraft, rotor control-mensitivity be directly responsive to the pilot so that versed mensitivity be directly responsive to the pilot so that versed mensitivities and harmonization programm can be investigated in flight. To further increase the flexibility of flight romearch, four additional switches are mounted on the instrument panel for andividual control of sensitivities of blade-flap collective, pitch, roll, and yaw. Cyclic and collective blade-flap control runs are cable and push-rod to the rotor swashplate where they terminate at three servo-actuators that control swashplate sotion. Blade-pitch control runs are also cable and push-rod to another servo-actuator which in turn controls blade pitch setting. Rudder, elevator, spoiler, and engine controls are cable or push-rod, as applicable. Surface control effectiveness is obviously small at low airespeeds. The converse is not necessarily true in the case of rotor controls because the system is designed to low-speed requirements, and hence, a constant or direct control input throughout the operating range may be found to yield excessive control at the higher atrapsade. Provision has been made, therefore, for a ream by hich the reter controls input may be varied automatically and gradually from ammissing to spro (or conversely) as a function of wing tilt. This desice is simply a linkage in which the input to-output ratio is varied by means of an adjustable fulcrum on the input lever. This linkage, patented by Kaman, is in current use in the control systems of production HOK, HUK, and HH63 helicopters. Lite of special significance to note that proportioning of rotor control to surface control is a continuous action that is accomplished noth gradually and automatically. There is no transition point at which the pilot must change his flying technique. The maneuver is continuous, and can more accurately be described as an extension of sirplane flying techniques down to zero airspeed conditions. #### SYSTEM Electrical, electronic, and hydraulic systems are conventional and simple in concept, in keeping with the philosophy of simplicity and susterity demanded by the program. Insofar as pussible, "off-the-shelf" components were used as in or with minor Rodifications, rather than designing components for a perticular function. This has resulted in some penalties in weight, and in space problems, but worthehile from the sconomy viewpoint. It was necessary to specifically design the wing tilt actuator system. Trade-off studies indicated that an electrosechanical system would possess maveral advantages over a hydraulic system, not the least being a simpler and more positive irraversible sechanism. As the system now units, two interconnected electromechanical actuators are used, each driving an irraversible Acces-threaded strut. The actuator bodies are fuselage sounted, one on each side, and the strute pin-jointed to the bottom surface of the wing front spar. A question at this time of establishing design parameters was - what should be the rate of wing till? Pitching analyses indicated that the Navy's experience with wing-flap extension and retraction would make a reasonable parameter; so wing tilt rate was set at the Navy's spectate of 5 degrees per second for flap operation. On top of this, an emergency wing-down rate of 3-meconds was imposed. #### Table 111 Summary of Principal Design Dimensions | by and Control Surfaces | | Conter of Gravity Location | | |---|---------------------------|---|------------------------------| | Span (wing) | 34 ft-0 in | Normal Gross Weight | | | Root Chord | 96 in | HOLES GEORG SOIGHT | 9300 lbm | | 11p Chord | 67 1n | Condition "A" | |
 ATOMS. | | . | | | Wing | 231 sq '4, | Wing Down - Clean Condition | | | Wing Flap | 71 mg. fr. | Distance Aft LE . MAC | 31.7 in | | Horizontal Tail | 78 mg . ft | | 41.1 in | | Vertical Tail | 58 au. ft. | Percent MAC | . 385 | | Spoilers (projected half-sp | man 5 sq. f1 | | | | Mana Anna | • | Moment of Inertia | | | Mean Aerodynamic Chord | | Lateral, Ix | 20,400 sluge ft | | Flap Stowed | | | 11,500 | | Flap Extended | 82.3 in | Directional, la | 97,000 | | Page Extended | 112.2 in | | • | | Lateral Distance from A/C | 95,2 in | | | | 34 | | Condition "B" | | | Wing Incidence | 0 deg | | | | Annulan Managara and a second | | hing Up 50° - LG down - flaps | | | Augular Movement of Control
Surfaces | | extended | | | SOLINCAR | | Distance Aft LE - MAC | 5.5 in | | Elevator | | Distance below LE - MAC | 82.6 1p | | Rudder | 25 deg | Percent MAC | . 107 | | | . 14 dog | | | | Spoiler | 6) deg max | Moment of Inertia | _ | | Wing Flap | 50 deg wax | Lateral, Ig, up 50° | 12,450 aluga ft ² | | | - | up 65 [∨] 1 | 13,250 | | | | Longitudinal, ly, up 80° 1 | 13,620 | | | | ຸ້ນຊ 65 ປ່ | 4.20 | | | | Directional, Ig, up 50 ⁰ up 65 ⁰ up 65 ⁰ | €,400 | | <u>r</u> | | Description of Description | | | | | Power and Drave | | | Configuration Blade Section | 3-bladed | Xngines (2) | | | | MACA 16-50m | Normal Rated Power | Y138.0E6 | | (modified in flap area)
Dismeter | | Wilitary Rated Power | 875 MP | | | 15.17 ft | | 1624 MP | | Blade Chord (constant) | 18 in | Operating Conditions in Hover | | | Flapping Hings (percent radius) | 9.2 | Engine Output Shaft to intar- | | | Bolidity | lol.v eq. ft. | Rediate Gearbox | **** | | Blade Flac | 0.18v | Input Shaft (Intermediate Gearbox | 6000 rpm | | Chord | | to Main Gearbox | | | | 9. d\$ 1., | First Stage Reduction (Spur) | €500 rpm | | Span . | 38.ly in | Second Stage Reduction (Planetary) | 4.07:1 | | Augular Movement | | Output (Rotor) | | | Blade Pitch (.758)
Blade Flap | 15" to 45" | Cross-shaft | 735 rpm | | | • | | 3900 rpm | | Collectiva | 130 max | | | | Cyclic | +25° | | | | Pilot Control Movement and | = | | | | Corresponding Blads/Flap | | | | | Deflection | | | | | Fore and Aft Stick | rlap angle المن م علي م | | | | Left and Right Stick | +7 in - + 50 blade angle | | | | - · · · · | To an a To bisco suffe | | | | Peda I | 40 flap angle | | | | • | +3.25 in - 3° blade angle | | | | | 15° flap angle | | | | | | | | # APPENDIX C DETAILS OF FULL-SCALE _TUNNEL TESTS #### TEST EQUIPMENT The K-reb is described in Appendix B, a general strangement to displayed in Figure 5. Test operations at MASA, Amou Research Center (ARC) were conducted in two phases: - Operation upon an outdoor etails thrust etaid for systems checker and taking of hover data; sind tunnel operation in transition and fixed-wing flight; A description follows of the thrust stand expressly designed for the K-100 program, a seasilytion of the 40280 foct wind tunnel will be found in 'Guide for Placeting Investigations in the Ames 40280 Foot Wind Tunnel' (-0). attons in the Ames 40880 Foot wind dunner (149). The throws stand was constructed on the aprim outside the hangar of the ARC Aircraft Sixte. Beauch, The original measurement of the ARC Aircraft Sixte. Beauch, The airplane headed Seath, Height above the ground and the fusclage angle of attack erre also fixed. The stand attocture was assembled into the form from attell shipts. At the attomes of the cross, our and the foot of the tig wite masts in the way of the aircraft landing gas. Extending forward from the cross-bar, substantially at the main gen pick-up masts, were two additional rembers to aid in pitch atabilization. The entire structure was lagged to the concrete aprop, and some 10,000 lbs, of steel blocks placed onto the stand structure. The sizeraft landing gen was replaced by adapters which, through load cells, mounted the airplane to the stand. The main landing gen masts were laterally braced to outboard; the tail mast was not braced, initial running discloses that the stand had a seven encommon in yas, permitting the mirraft to approach the threshold of restability. Additional bracing was installed - laterally between the main masts and laterally at the tail mast. The final configuration of the stand can be seen in Figure 69. The load cells installation can be seen in Figures 70 and 71. Figures 70 and 71. Though the static stand was adequate for the original purpose of system checkers, it left such to be desired when the program was expanded to Include the taking of hower data. Secures it was expanded to Include the taking of hower data. Secures it was completely expand to the weather, test perstions could not be conducted under controlled conditions. However, rains and winds of 10 knets or higher frequently required curtailing or wiving 'est operations. The effect of lessor winds, and perhaps some importantly, the fixed orientation of tail to essentially constant prevailing wind, is a most question, but it does give rise to doubt of the quantitative validity of some data - particularly slipstream turning and draw data. It is unfortunate that the universal things and dead data in the first of negotiating the program was and the first of negotiating at the first of negotiating at the visual available. His word, despite the limitations of the visual as built, data of some value was obtained. In the background of Figure 60 will be seen a trailer in which were installed a remote control on soluted and all recording and indicating in tromentation. and all recording and indicating in trementation. All sincraft mysters sero remately controlled from the console (Figure 72). Control inputs sero according to the console (Figure 72). Control inputs sero according to the ship cockpit (Figure 73). The actuators sero introlled in the ship cockpit (Figure 73). The actuators sero introlled, respectively, to the thrust control tollads prich), forcand-aft control to the port yet, lateral control to the starboard attick, and yaw control to the rudder pedels. Butter fuel-control-unit operation saw by precessite master and rise actuators are seried from the required to mainter ship systems were seened from the sincraft panel and installed in the record control commode panel. The sigh series cable connections the console backs, an extrusion of the sireratics indicating system - not a parallel system. The right-hand propulative rotor was instrumented to furnish both rotor control sotions and rotor strikes, the transmission and endine installations to furnish with action and tomperature lavols, the control system to measure control inputs, devered areas of the structure acts strangeged to monitor attraction. The catent of the resolutional and anstrumentation systems installed in the attraction of approximated from the fact that theme systems weighted 940-100. This instrumentation was recorded at both the thrust stand and the wind tunnel. A tabulation of the instrumentation and mathod of recording will be found in Table 19, Appendix C. Additional instrumentation was set up by ARC to secure force data at the thrust s'and. The force-indicating loadcalls measurements were transmitted to Indicating Microvit Potentiorets; (IMP's) whose readings were recorded both visually and photographically. At the wind tunnel but recorded force and moment through a dust system. Scales to the balance house to reach the test section are rigged to print their readings on tapes. Studie gage readings from within the rest section are rigged to print their readings on tapes. Studie gage readings from within the readers fed to 180 % located in the control room adjacent to the tunnel test section. The data recorded on the IMP's are passed through a small computer that sweinges the readers and shelltaneously types out and cardpunches each data point. Thus computer is manually fed such data as run number and wing 101 magle. The punched cards are later introduced anto a computer program that corrects for such rises as static soughts and tunnel wall effects to give final data for each run. A commute was manufact at a hatch in the tunnel colling abait the emplane to record tuft patterns on the sing. The case is was origined by observers at this station who were kept in communication with the control room vis Rakan recorded data on three 12-inch oscillo-graphs, and visually recorded indicator readings at the control console. #### TEST OPERATIONS Following assembly of the K-10B a functional tie-dosu checkout of all ship systems was run. The airplane was then disassembled and on 26 September 1960 air-freighted via MATS C-13 to NAJA, Assembled Center, Moffett Field, Celifornis. An equipment malfunction in the C-133 compelled it to triminate at Travis AFB where the K-16B and its anniliary equipment were transferred to C-124's for transcript at to Moffett Field. Re-emerchly of the uirplane and installation of lemete control and instrumentation equipment proceeded 12014[1], and by sid-November the thrust stand installation are tously for opinition; however, a transmission failure at the posts-and-drive endurance bunch stand at the Kasau factility cantilled thrust stand operation (KK Report G 113-241) (183). But my the next wewsral months a number of eagler assemblings were removed from the aircraft for use at the endurance bunch stand. By mid-November 1961 endurance operations had sufficiently pregressed to warrant a return to ARC to start to assembly of the ampliane. During January 1962 the K-188 case institution in the three team (Figures 14 and 73), but completion of the receive control and instrumentation installations was happen by the need to exect a new test control in the provious plantage of the provious year and proved to be too swall for efficient operation. anil, the anglane and thoust stand were being as any a for operation, Ad' and Karan personnel had arrived at a stembard speciating procedure. This was predicated on the anymonous contraction of responsibility as
contained in the contract contract leading low this test program. Karan's responsibility by with resumminity of the electronic operational checked of operation and assumement of the airplane during the test program, ARC's responsibility was the establishment of the test format (alth Karan agreedynamic consultation support if requested) and test operation. First to operating a threat stand - or wind tunnel - test configuration the K-166 would undergo a proflight inspection and an instrumentation calibration if such were necessary. Becambelle, the test run schedule was entire program, rather, a run schedule was set for the collection of the procedure runs. Bowever, a tentative schedule outline was prepared and will be found in Table V. Appendix C. in all respects the airplane was operated by remote control. The engines would be started and rotors Figure 69 Thrust Stand Assembly Figure 70 Main Gear Load Cells Figure 71 Tail Gear Load Cell Figure 72 Remote Centrol Consolo Figure 73 Control Input Actuators in Cockpit Figure 74 Installing on Thrust Stand Figure 75 Thrust Stand Installation Complete brought up to the spa desired for the run, then the particular test configuration would be set. The NC Project Engineer was the conditator for all test par unnel stationed to the control-and test trailer. Class was also fine at the wind tunnel control toom). It was the responsibility that are interesting were taken before the next point to the test con was called and set. Operational select was the responsibility of the Essan Project Engineer electric to observe the archael at the major at a desirable and set are also also as position to observe the archael at the point of the control of the selection was several as were always in communication with cache-other by interects. Initial thrust stand cus, the first of shick semands on 6 Pebruary 1902, see concerned with system chocks outs and rotor dynamic between A chicagological log for the thrust stand and sind tunner operations will be found in Table VI, Appendix C. was of the thrust stand. Additional to a niglicity of the thrust stand. Additional to a niglicity of the situation to a still substantial but periodic different level. This resurk = and for this matter all activity on the sireratt = was delayed by ten straight days of heavy rains and high sinds. In fact, the providence of new and minds of 10 knots or higher frequently caused waiving test operations. By 12 March several thrust and systic test tuns had been mads. (Views of the operation are shown in Figures 76 and 77). On this date the normal post-row inspection disclosed that a wing timeloo fitting had failed in fatigue. (Reported in weekly "throughparks apport to HAAD-322. The failure iffgures 60 was believed attributable to the substantial, remaining low-respicency wibration of the sipplane on the thrust stand attuiting, on top of prior fatigue damage during the thrust stand resonances. This fitting, of which there are too, was designed in aluminum. Because a minimar violation problem could well exist in the wind tunnel balance system, both fittings were duplicated in steel. Procuring new fittings and installing then took the better part of 8 areas. Early in May, several dwys after restarting the thrust stand program, a sprag clutch in one transmission failed. In wise of the experience with sprag clutch tails ures at the power-and-drive endurance stand, the sprag clutch is each transmission was replaced with a lockaut for thrust stand and wind tunnel operation only. This also required a change of drive shalls to retune the system because of the change in system frequency due to the lockaut. Late in June, following shutsdown of the final test run on the thrust wfand, it was found that the igniter bracket on the left-hand engine had failed. Upon pulling the engine it was discovered that a fine's engine mountainting mountain hole in a structural support fitting had elongated, and that there were several runches in adjacent when wetal structure (Figure 19). The engosity hand engine was pullud. No distincts was more in the lifting but cracks in the short intal were found, sustain the cases in the left-hand machie. (Supported in weakly felecomprogress report to Raab-1922). Dynamic balancing of the rivers had to be done on the mirphams. During institutions a slagifidywarfs unbelined in the left-most rotter, against the by the two-most threat atom the defining tester and appears it is inscalably, seculted in init it damage to the rounting hole constitution, and the design fire, with the arrady river telearance, mulmedgent running permitted behaviors of the counting mystem and further large, to the firsting. The cracks in the sheet matar components were caused by an extraord, a tested load requiring fire, a take-permy forcing function of the engine drive what Hooke joints. A rea force of joint had become available, see smetalled, and significantly reduced the forcing function. The area in question is not susceptible to inspection after engine installation. Buting the downstame for this repair the planned was completed. Because this included replacement of the blade flags, the Kilôf was left on the thirst stend so the new blade/flags resculing could be dynamically between this particular and repair to thust stend so the new blade/flag resculing could be dynamically between this period of earnessment and repair to these thy conseil no delay to the tunnel operation for we were on standby states. On 9 and 10 August, rotor balance runs also made, on 20 August the whip are reroved from the thrust stand and toward to the 15-30 foot tunnel, On the last day of the month the alignance was lifted into the tunnel and secured to the three tunnel myloon that are mounted on the floating balance frame. Figures 80 and 81 show the holsting of the whip into the tunnel and the completed installation. Nicetric power lines, fuel lines, rewote control leads, and instrumentation cables were run through the pylon fairings to the text control room adjacent to the tunnel test acciion, and tunnel operation started on B September. Figure 82 slows one point in the operation. Operating procedure in the tunnol followed a more or loss standard pattern. Following maintenance, and clearing of the atrplane by inspection, approximately 30 minutes were required to ready the tunnel for operation. This preparation consisted of synchronizing the electric motor-generation set for the tunnol fars, closing the operation and conditional procedures, and conditionally zero readings in the falance scales and the IMPS. when this was done the normal preflight checkout could be made. Following this proparation, both engines would be storted and idled with fire-goard on hand, when the fire-goard was received and the tunnel access door closed, the islors would be trought up to text ups. At this tire the tunnel operator normally wuld be instructed to extend the staff with the lang. The staff expense of a stack of -12 degrees, and to saise tunnel 'q' to that required for the pair what is the first test point configuration acting blade collective flap, wing flap, and power with blade collective flat, if wing till was required, it would be put in affer the safe was 1-12 degrees to avoid staff hysteresis as nech as possible. arriving at the first data joint was often a tirecommuning process as thrust and power had an influence on tune 1 by And ware verse. This was further complicated by the fact that the companied at the inclose balance a feat not easily accomplished atts the poweractic throttle account, system and the YT88-6 ourne droop characteristics. As soon as a data point was reached, data recording could start. ARC could record its 140 data on the computer, photos of the wing tutta could be taken, and we would record our data. Following this, the tuned operator could be instructed to take his data on the scale tapes. Learning to Coordinate this data-taking took a while, but the overage time per point was grodually reduced to about our to one-and-one-half minutes. Often between data points add would compute total dang and iff the note where drag econsed from negative to positive, and to assure that sing and flap loadings did not exceed stress limits. In the latter part of the program experience had so developed it was possible to make two runs back-to-back, climinating the extra tire required to start up and reset conditions for the tunnel and the ship. Following the end of a data run the ship was brought to the wing down-flaps up condition, idled, then shut down. The funnel would then require airing for from one-half four to an hour, depending upon how long the engines had been run, before personnel could enter the tunnel to service the ship. Once tunnel operations started, in a period of slightly of r tan weeks - 5 September to 21 September - Soon 23 he s of power-on operation was longed. Darting this time of Kajor times of mathematics were one outgine change because of foreign object down, and two instances of power turbine (int. These caused 111th Johny to the program, On 21 September the return when returned and us 24 September power-off roms had been completed and the air-place in owed from the tunnel. #### DETERMINATION OF ENGINE POWER Engine whaft horsepower is determined by the following steps: 1. Head $N_{\frac{1}{2}}$ rpm for each engine from the ownillograph traces. 2. Correct H to subject conditions by dividing H by $\sqrt{\mathfrak{S}_2}$ where 9 - Compressor Inlet Temperature (OR) Compressor inlet Temperature (°F) + 460 3. Enter the appropriate engine calibration curve for the perticular regime in use with $N_1/\widehat{\Theta}_2$. Proceed to the curve labeled $\mathrm{HP}/e_2^2\sqrt{\widehat{\Phi}_2}$ and horizontally to the $\mathrm{HP}/e_1^2\sqrt{\widehat{\Phi}_2}$ which is, also, Figure 76 Thrust Stand Operation - Wing Down Figure 77 Thrust Stand Operation - Wing Up Figure 78 Wing Trunnion Fitting Figure 79 Engine Mount Support Fitting Figure 80
Installing in Tunnel Figure 81 Installation Complete Figure 82 Tunnel Operation by $d_{\tilde{g}}\sqrt{\Theta_{\tilde{g}}}$ where 63 - Compressor Inlet Pressure 29.92 - 5. Read the rotor spm from the ownthlograph trace and multiply by the gear ratio to obtain ${\rm M}_2$ spm of the engine. - 6. Correct H to ambient (standard) condition by dividing \mathbf{H}_2 by $\sqrt{\mathbf{G}}_2$. - 7. If N is above or below calibration operating rpm of 19,500, look up the rower loss or gain from "Output Power ws Output Speed" graphs furnished by the engine manufacturer. Buter the ${\rm H_2/\sqrt{\Theta_2}}$ at the operating rpm and proceed verti- cally to the closest operating $\mathbf{R}_{\hat{\mathbf{l}}}$ rpm curve, then proceed horizontally to the corrected "Output" scale. R2. $\int_2 \sqrt{\Theta_2}$. By the same for the calibration \aleph_2 to -if 10.700. Out differ ence between the two readings is either a loss or gain in horseposer. If the engine is operating below calification rpm it is a loss; if operating above it is a gain, - 8. Subtract or add this value to the horse-power previously c sputed. This is the horsepower small-able from the engine power turbine bufule unity into the main reduction gear (MRC) box. - 9. To obtain the shaft horsepower, subtract the power loss through the MRG hox. The values of power loss are furnished by the engine manufactures for the average gearbox horsepower losses versus N corrected rps. 10. Outract this bursepower loss from the engine borsepower available from the power turbine (step 8) to arrive at the final or shaft horsepower. Comparison of the calculated horsepower using this method compares favorably with the horsepower determined using to que strain gages mounted on the ERC output shaft. | | | Table
Instrumentation and t | | Recording | | |-------------|--|---|------------|--|---| | | corded on Outillogra h | | 8 . | Engine oil-in temper- | Thermocouple at tank | | 1 | . Blade flatwing bending moment | Strain gages at Sta 49 at
point of maximum thick-
ness - RH blads | 9. | Engine reduction gear
oil-in temperature | Thermocouple at tank exit - both engines | | 3 | , Blade adgewise
bending moment | Btimin gages on arm to
Belleville springs
- RH blade | 10. | Throttle position - percent | Potentiometer meas-
ures percent of full
travel - both engines | | 3 | . Blade flap control tod | Strain gages on chord- | 11. | Inlet duct tempéra-
turos | Two thermo-electric probes | | 4 | . Blade flap bending moment | Strain gages on spar at
flap med-span - RH blads | 12. | Angle log oil-in pressure | Common with main trans-
micsion | | 5 | . Rotoprop asimuth pomition | Magnett: pickup on
rotor whaft | 13. | Angle box oil-in
temperature | Common with main trans-
mission | | 6 | . Blade flap travel | Potentiometer on hub """
crank - RH blade | 14. | Main transmission
oil-in pressure | Pickup on common line with angle gearbox | | 7 | . Blade flapping | potentiomuter on flapping
pin - RH Diadu | 15. | Main transmission
oil-in temperature | Pickup on common line with ungle gearbox | | | torque . Main transmission wibratories | Strain gage torque bridge
on RH main shaft
Vibration pickups - fore
and aft - mt tup of
cross-shaft take-off
housing - buth trans-
rissions | 16. | Engine vibration | MASA installation requirement - both engines (a) Fore and aft on MRQ POX (b) Fore and aft on engine nome (c) Lateral at gas generator aft rin | | 10 | a. Stresmen and strains a. St. rear engine nount link | Strain gage | 17. | Roter blade collect-
ive pitch input | Potentioneter measuring
atroke of actuator -
RH blade | | | b. Wing tilt screw-
jack clevis | Strain gage on each clevis | 18. | Blade flap collect-
ive input sensitivity | Potentioneter at actuator | | | c, Wing flap follow-
er rod | Strain gage | 19. | Rotogrop roll input | Potentioneter at
actuator | | | d. Transmission
mount | Strain make on each (8) | 20. | Antoprop yaw imput
sonsitivity | Potentioneter at actuator | | | e. Wing trunnion fittings | Strain gage | 21. | Rotoprop pitch input | Potentiometer at actuator | | | f. Wing front mpar-
cap aplicas | Strain Mager
(a) hS 69.b
(b) WS 131.4 | 22. | Rudder pedal input | Potentiometer at rudder pedal | | | g. Wing rest what- | Strain gages | 23. | Rudder travel | Potentiometer at rudder hinge | | | cap splices | (a) WS 0
(b) WS 25.5
(c) WS 86.2 | 24. | Fore-and-aft stick
input | Potentioneter at etick | | | h. Gas generator -
N ₁ rpm - percent | Tachometer and electric counter - both sakines | 25. | Elevator travel | Potentiometer at elevate
hinge | | | f. Power turbine -
No rpm - percent | Tachomoter and ojectric
Counter - both engines | 26. | Lateral stick input | Potentionoter at blick | | | - | | 27. | Spoiler travel | Patentionster on spoiler
linkage | | . <u>Vi</u> | power turbing tempers- | Thurmocouple - both | 28. | Wing tilt - percent | Servo at pivot point in pylon | | | ture - T ₃ | engines - (G.L. in-
stallation | 29. | Wing flap travel | Servo in cockpit - null
balance with servo
actuator on flap | | 3. | Gas generator - h rps - percent 1 Power turbing - N rum - percent 2 | Tachometer and electric counter - both engines Tachometer and electric | 30. | Nacelle temperature | Thermocouple above engi- | | 3. | rym - percent 2 | countar - both augmes | 31. | Thrust stand force | Wasa installation - | | 4. | Fuel bookt pressure - psi | Low pressure warning
light - both engines | | indicating load | indicating Microvolt
Potentiometers | | 5 | Engine fuel pressure - pei | G. E. installation -
pickup on fawl control
unit |]
 | | 4 | | 6. | Engine oil-in
pressure - psi | G. E. installation | volt Pat | untiometers read the tu | ind tunnel Indicating Kicr
nnel bulance scales and fe | | 3 | . Engine reduction gear | G. E. installation | the info | ormation into a small con | aputer. | #### A. Langitudinal Table #### 1. Static Thrust Tests (Hovering) - a. Run at 725 rps with $\Phi_{ij} = 10^{11}$; $\Phi_{g,w} = 35^{11}$, 40^{11} , 45^{11} , 50^{11} - b, Hall angle of attack, $\omega c_h \approx 11^o$ (fixed πC_h - at thrust stand) - Sut wing till angle, T , at 40°, 50°, 60° - For each T set inegitudinal stick per tions of 40% and 10% forward, noutial, and 10%, 20%, and 50% aft - For each condition of ech · T . for horizontal and vertical equilibrium go through an uncursion of interal size position, then an uncursion of right pedal deflection - Record. Lift "L", Drak "D", bide force "Y", rulling absent "L", richling memers "m", and varing moment "m". Also, "T. «Ch! etick positions of ", "R", "Ch. "Il, engine parameters T₂, ν₂, 1₈, N₈, N₁, blade flap deflection and blade flapping. - Compute moments about C.G. position which varies with wing tilt. #### 2. Transition Tests - a. Test dynamic pressure should correspond sectionally as possible to level flight dynamic pressure at the particular T (serie T T C_1). Run at $\int_0^1 -13^{\circ}$, $\int_0^1 -40^{\circ}$. - b. At a particular value of "q" and T vary the sullective pitch G until the "a" force 0 - c. Run through excursions in set h (Rosping E = 0) by varying 9) through L = 9,000 lus for useh 0 several values of longitudinal attick position. - d. Run at 4 or 5 values of "q" and \mathcal{T} . At each "q" go through small excursion: in spend. - e. Record: "L", "B", "B", "C_B, "T', "J', "B', "G', "Ivonitudinal stick position | \(\delta_{\text{in}}\) | and engine personnal T_{\text{in}}, P_{\text{in}}, T_{\text{in}}, N_{\text{in}}, w. #### 3. Forward Flight Tosts - s, goe at now aps, constant power, wing down, $\phi_{\rm p} \sim 0$ - $\theta_{\rm s}(E) = 11 \omega_{\rm pl} \sim u_{\rm Pl}$. Run NRP, 168RP, $|\mathbf{T}_{\rm g}| = 0$ - C. For Haps down 400; Non .6NRP; .3 NRP; - d. Set clevator angles for control system decign loads at the chosen "q" - Hun through engle of attack range at several constant \$\int_{\text{e}}\$ and constant power for the various power conditions, both flaps up and flaps doen - w. Records thin, from, then, then, then, ∞ , \P_p , β , N_5 , T_5 #### 4. Lateral Control Effectiveness Tests - a. Finys Up - 1. Hum at .GNRP at 2 or 3 angles of stack - Num through a spoiler deflection range, or witnesselv. - Hum through a small angle of attack range at several appiler deflections - $b: \ \text{Figs.} \ \text{down} \ 40^{tr}$ - 1. Wand down .3NRP aw in (a) - 2. Wing of $\approx 50^{0}$. (a) Run at the "q" appropriate for the ${\cal T}$ - 1 : Fort leteral stick using spoiler deflection as a guide. At several spoiler deflections and constant values of T record the following: - 4. Record L. D. Y. w. n. L. H_g , Φ_g , Φ_s , Φ_s , Φ_1 , Φ_2 , Φ_3 , Φ_4 , latered effection Φ_1 , Φ_2 , Φ_3 ### H. You Tests #### 1. Transition Tests - a, Flaps down 40°, $\int_0^{\infty} = 13^{\circ}$, 725 pps. Run at same "q's" and T' as in longitudinal tests - b. At each "q" and T' combination of longitudinal texts beloct at least 3 T' for triamed level flight equilibrium. - (T' T + *C constant for any T") - 1. Depress pedal keoping lateral stick neutral (for example 20) - 2, hun through a range of yaw angles - 3. Repeat at other pedal positions for each \mathcal{T}' . (for example = 40%, 60%, 80%) - c. Repeat at other "q'a" - d. Record: (L. D. Y. w. n. L. f_r , f_u , ϕ_h , \mathcal{T} , Φ , $\beta: \ \Upsilon_5, \ \varkappa_2$, f_u #### 2. Forward
Flight - Set zero rotor wensitivity. Run at constant power. - b, F'aps up NRP; .6NRP; $T_c = 0$ - c. Flage down = LONRP; JNAP, T = 0 - Run at two wo's, both flaps up and flaps down. - e. Set of at acveral values. Run through yaw range. - 1. Record: L. D. Y. m. n. l. π. δ., Θ. δ., β. | | Benerits | Aug abstract - covers of remote cable dog-bouse between stand | and control room publied free when
wing flaps lowered - strap covers
in place | Full P & A atick - 50% pitch | Run aborted - underground main
(sel tanks empty | 1 - 945, N - 508; T - Posturen lampectics ilectored in 1 - 45, d - 00, \(\oldsymbol{\text{0}} = 10.80 \) | N reduced to 869 with ⊕ = 13,00 | * | Rold constant 9, & C. verying of | • | dr - 0°, 0 - 9.6°
Crille: K - 978, K - 908; 7 - Run aborted - setsed EM trans- | from clutch | | | | | | | | | | | |--|---------------------------------------|---|---|--|--|---|--|--|--|--|---|--|--|--|--|-----------------------------------|---|---|--|-------------------------------|-------------------------------|---------| | 1 Operation | Date faken | | | Cyclic: F, - 955 | 55. 4 . 46.; 0 . 0 ; 4-18.7 | જું જુ | 1 2 | | d = 13', Q = 10 9' & 13.6'
 Polar: vito variable d = | N - 917. N - 698. T | | | | 62°; 4°; - 0°; 4°; - 13°; ⊕ - 6.1°; 2°; 13°; 4°; 13°; 13°; 13°; 13°; 13°; 13°; 13°; 13 | aft htick at 100% patch sen-at- | | ef = 0; eβ = 13°; Θ = 6.1°, 30 | units fed and 40 units aff at | 1 - 62 and 1005 pitch sensit-
ivity. 30 units & L. rudder
pedal, and 30 units & L. stick | To long control went its tare | | | | į | 1 N | 8 | | 0041 | 98.
0:10 | 1900 | 007L |
 | 7800 | 3
3 | 9.18
1.18 | | 0:16 | | | 8.
 | | | | | | | | P P P | Bte | 3/9/63 | | 3/11/62 | 3/12/62 | 3/12/62 | 4 /27 /62 | | 4727/62 | | 5/ 3/62 | | \$/16/62 | | | 5/17.62 | | | | | | | | Chromology of Thrust Stand and Wind Punnel Operation | Remarks | E01100 - | No rotors - Lif engine check | Wintation survey with both sugines and both rotors | LR engine only - yaw resonance in
stand on threshold of ground res-
counce - main anchor hear served | looke from lag toilts - remork
started to stiffen and retune
to: Liand structure | Wiretion survey of stiffened for stand | RH rotor balance runs - RR engine and rotor only | BF rotor balance runs - RB engloe
and rotor oaly | LR rotor balance runs - LF entine and rotor only | LH rotor balance Funs - LH
engine and rotor only - com-
pressor stail | LH rotor balance runs - LA
engine and rotor only - com-
pressor stall - change LH engine | Falance run both rotors - RR engine only | 12 rotor belance runs - LA engine orly | 13 rotor balance runs - Listengine
orly | Li rotor balance rens - Li engine | Balance check run - both rotors
and both engines | Balance check run - both rotors
and both engines - wing till 650 | Functional check of aircraft and instrumentation | | insufficient throttle - rerig | | | | Date Paken | - Tarust Stead Operation | and | 545; N ₂ = 205; MB pickups = stories at transmissions | N ₂ = 592 | | N ₁ = 12%; N ₂ = 42%, MB pickupe | N ₁ = 845; N ₂ = 50%, MB pickups | N ₁ = 89%; N ₂ = 97%; MB pickups | N ₁ = 765; N ₂ = 605; Mo pickups | M = 5.8%; M ₂ = 20%; MB pickupe. | M 848; Mg - 825; MB pickups | N ₁ = 945; N ₂ = 825, EB pickups | M1 - B6K; N2 - 645; NB pickups | #1 - 60%; %2 - 80%; MR packups | H - 86%; H2 - 90%; MB pickups | H - 82%; N2 - 86%; MB pickups | M ₁ = 87%; M ₂ = 91%, MB pickups | N ₁ = 92%; N ₂ = 90% | | Polar: N - 365; N - 928; 7 - | 23°; 4° | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 0:12 | ä | 0:0 | | 8 | | | | | | | | | | 6:03 | 8:0 | 180 | 0021 | 1800 | | | | 3.8 | | 1/25/62 | | 2/ 6/62 | | 2/18/62 | 2/20/62 0:25 | 2/21/62 0:26 | 2/21/62 0:16 | 2/23/62 0:04 | 2/36/62 0:10 | 2/28/62 0:03 | 2/28/62 0:06 | 3/ 1/62 0:22 | 3/ 2/62 0:04 | 3/2/62 | 3/2/42 | 3/ 7/62 | 3/ 8/62 | 3/9/62 | | | | Remarks | Puri imperioo disclosed
iniled engles soor: fitting | Potor balance red
Potor balance run | Prior balance run
Prad egetem check-og' | Bun aborted - generator seeding - Generator seeding - Centrator of the seeding - Centrator Centr | tonnel Am. Falled the Arales in RR MC 011 | BY engine compressor stall on
whor-down, lole: guide wase
an'usion hyankel chanked,
Peplaned brankel | POD to P9 engine compressor -
stoned blades | Non aborted Measures high regime with the total order of the principle of the total order of the tring. We explore washering 7000 ", at idle, loter guide wise actuator. | Drait for clack . Bellaced . CDC . Vita 100 were recipilitated . TOD III suggest to compressor black root damaged . Charge to capture series 310. Replace fract was bashings. | |-------------------|---------------------------------------
--|--|--|--|---|---|--|--|---| | | Data Taken | Variable thrust & cyril of at 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 4 1875 1 1875 1 4 1875 1
1875 1 | | Distriction of the contract | Sherk-out run | Check.out run | Polar q = 5.0, ac = -120 to
-120, T = 100, af = 40.
d ₀ = 80 units, R ₁ = 845, k ₂ = 885 | Palar 3 - 5 0, ac - 12° .
-12° 7 - 10° 6, - 40° .
-6° - 80 units, N ₁ - 911, N ₂ - 844 | 710-stino curvey N2 - 845 to 915 | 2012 - 4 - 5.0, 46 - 120 to 114:) 7 - 370, 4f - 470, 4h - 30 antis, 8 - 895 to 845, 82 - 895 | | | 5 1 | 15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0 | 019L
0:19
020L
0:26 | 931L
0:22
0:22
0:17 | 0;11 | .52 | 3
0,37 | *.:
*: | 5
0;13
5
0;30 | € Ö | | Table VI (cont'd) | 2 2 | 6/27/62 | 8 '9 '52 | 8/10/62 | 975/62 | 3/5/62 | 9,6,62 | 9/7/62 | 9.7/62 | 9/11/62 | | Table VI | Remyks | Run at 1007 respective control bensultation | Run at 107% respective control | Failure in beering retention of
anti-torque souster in azimuth | | | | Pun aborted . Itak in oil taok | | | | | Deta Taken | Cyclic: with variable 7, 40, 10, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4 | 4 90%, Full L& R rudder & full L& R stirk at 7 - 62°, 5 - 13°, R ₂ - 90% R ₂ - 90% R ₂ - 10°, 4 - 80°, 7 - 7 - 10°, 4 - 80°, 7 - 7 - 10°, 4 - 80°, 7 - 7 - 10°, 4 - 80°, 7 - 7 - 10°, 6 - 80°, 7 - 80°, 7 - 80°, 8 - 80° | $\frac{Cyc_{1,C}}{N_{2}} = 91 \cdot q_{1} - 921 \cdot a_{2}61$ $N_{2} = 91g_{1} \cdot T = 62^{-1} \cdot d_{1} = 40^{-1}$ $d_{0} = 11.0^{0} = 35 \text{ units for a since}$ a 10 units at a rick a 1999 | $\frac{C_{cellc}}{C_{cellc}} \frac{N_1 - 971, N_2 - 911}{N_2 - 401}$ $\frac{Q_{cellc}}{Q_{cellc}} \frac{N_2 - 401, N_3 - 911}{N_3 - 911}$ $\frac{Q_{cellc}}{Q_{cellc}} \frac{N_3 - 401, N_3 - 911}{N_3 - 911}$ $\frac{Q_{cellc}}{Q_{cellc}} \frac{N_3 - 401}{N_3 - 911}$ | $\frac{C_{\text{FG}}(1)_{\text{FG}}}{C_{\text{FG}}(1)_{\text{FG}}} = 975, R_2 = 915$ $7 = 620, d_1 = 470, d_2 = 10.40;$ | Θ = 6.7° - Pull right & full left mitch & full right & full left midder independently at 190% pitch, roll, & yes emonitative | | Foll, & yes sconitivities Mariable throat & cyclic run. R1 = 93% & 96%, Mg = 91%, T = 62% \$_1 = 400; J_0 = 10.40, \Theta = 13.30 | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0:28 | 019
192.2 | 931L
9:37 | 12 5
14 5
14 5
16 5
16 5
16 5
16 5
16 5
16 5
16 5
16 | 013L
0:35 | | 9:15
17:17
17:17 | 00.44. | 01.72
00.34 | | | B te | 5,18/62 | \$ 723 / 62 | 5.24/62 | 6 '15/62 | 6 '18 '62 | | 6/18/62 | 6/21/62 | 6/21/52 | | | F T T T T T T T T T T T T T T T T T T T | | | Pus aborted. Aigh twant ambies:
caused MRG off to overtemp | | | | | Elowen added to wing | | |-------------------|---|---|---|---|---|---
--|--|---|---| | | Data Takes | | Dalar q = 4.0, ec = .13° to .16°, 7° = 30°, d _f = 40°, 6° = 40°, d _f = 80°, | | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 87.5%. Check flaboung remonate etch sing fill. Polar: q = 33.2 (100 kt), c = 00 to 80, 7 = 00. d = 00. | For the St to MB St to MB St to MB St MB St MB ST TO MB ST MB ST MB ST TO M | 0 - 0, N ₁ - 85 % to 91 56. Kg - 845 Flapping response there. Polise: 0 - 6 (150 m) M, no | to -60, 7 - 00, 4 - 01, to 92 55, 4 - 07, 7 - 00, 11 - 915, to 92 55, 12 - 07, 12 - 01, 12 - 01, 13 - 01, 14 - 01, 15 - | (40 kts), W_ = 120 to 120, (40 kts), W_ = -120 to 120, 7-300, dr = 400, do = 80 mests 8 ₁ = 93% to 94%, R ₂ = 89% | | İ | Brgs
77.88 | 15 | | 91
0:30 | 8 | - | | | | 11:30 | | Table VI (comt'd) | 7h te | 29/91/6 | | 9.16/83 | 9.14.62 | | | | | 9,18,62 | | t eldaf | Reserbs | An aborted. Cold hase-na. Sjunt throttle Rus aborted. Put lask is EE engine - feel control wait selfunction. | Lust trace of collective-plich potentiometer. Clemed pot. Recalibrated blade pitch. | Run aborted - hydraulic premure
light flickered | Pur aborted Both arimuths rock-
ing who pitch segality; (y
hunged to link arimuth control
okay | Elevator locked. Pitch semiltiv-
liv changed to SS to lessen lo-
fluence of elevator buffet. | | | excutaion $\eta=12$ of Feplace spacers to action the contract of $f_{\rm p}=4\eta^2$ is classification in the constitutity in the second that the constitution of constit | | | | Duta Taken | | Poles: q = 5.6, ec = -12n to
-16°, T = 30°, d _f = 40°,
d ₀ = 80 units, R ₁ = 94% to 93%,
K ₂ = 88.5% | | | Pitch control eccursion: q = 5.6. 4 67, 77 - 307, 47 + 400, 4 80 quits. Stick to 40 & -40 quits. | Paler q = 12.0, ec = -120 to -14°, f'= 20°, d _f = 40°, d _f = 60 units, K ₁ = 941 to 881, K ₂ = 385 | Polar q = 12 0, 45 = .120 to 140 7 = 200 4 + 400
400 | Plich control | $\frac{\log_{12} x_{*}}{46^{\circ}} = \frac{4}{7} = \frac{21}{9} \cdot \frac{46^{\circ} - 12^{\circ}}{46^{\circ} - 40^{\circ}}$ $\frac{4}{6} = \frac{40}{80 \cdot 1014}, \frac{4}{1} = \frac{695}{895} \cdot \frac{925}{926}$ $\frac{1}{12} = \frac{16}{8} \cdot \frac{55}{8}$ | | | g 1 | 0:24 | #
• ö | 0:21 | , 30
C. 40 | 10 0:41 | X | 2 | 8 | * | | | 8 | 9712762 | 9/13/62 | \$713/62 | 9/13/62 | 9 13 62 | 9/14/62 | | 9714/62 | | | | Reserte | Leading der gloven å center seriton slam removed. Cretas m borb preser urbline shrouds - nione hiades | |-------------------|-------------|--| | ·
· | Zeta Taken | Mujar water Lathers & CS 1.11 | | | 97 | | | (P. 1000) 14 | o) ac | 6.24 62 | | 7a5ie 71 (cont'd) | Rearts | Change bearings to alides a tip space of room flap control space of the control space of the spa | | | inta lakes | | | , | | 1 1 1 1 1 1 1 1 1 1 | | ĺ | Run
Time | | | | R. sa. rits | Elivator lock removed Pollosing continuous record of marginitis run aborized because of oil less in Ris margine Act for props off data | |-------------------|-------------|---| | | Data Taken | | | | Rus
7104 | 20 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2 | | Table VI (cont'd) | Date | 9 . 2 1 . 62 | | The VI | n - saarka | Dwer turbine rub - RR engine; | | | hais Inten | 10. 13. 13. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10 | | ! | 4 P | 27
1:07
1:37 | | | Date | 9/20 62 28
1:U7
9/21 62 27
1:37 | # METHOD FOR DETERMINING ROTOR PERFORMANCE The requirements of propeller geometry for high propulsive efficiency in both static and high-speed conditions are moment contradictory. VTOL aircraft propeller design becomes a compromisuo between conflicting requirements of hovering and cruising flight. To minimize the cruising efficiency penalty, which a high activity-factor static thrusting propeller entails, it is advantageous to operate the hovering propeller at as high a blade loading as possible. For example, to satisfy hovering requirements a highly cambered airfoil is necessary to attain a high blade loading. The rapid drop in required thrust from hovering to foreard flight, however, forces the propeller to operate at very low thrust coefficients in cruise. To operate efficiently at low thrust coefficients, a low solidity is required to keep the blade near the maximum lift-drag ratio on the blade section. The advantages are apparent for varying the camber to provide a high camber when howering and a lower camber in cruise. The propulated rotor achieves variable camber by incorporating plain flaps on the outboard portion of the blades. Mean lift coefficients of 1.0 have been attained in rotor tests when the blade was cambered for a design lift coefficient of 0.5 (KAC Report G-III-4)(5). There is, of course, a drag penalty due to flap deflection which also enters into the determination of the compromise rutor. To minimize mircraft weight a minimum propeller diameter, and commonwently a relatively high disc loading, in chosen. It then becomes moreovery to determine the best compromise between crushing efficiency and hovering figure of merit at the required thrust. Because a VTOL propeller must often operate in the high angle of attack condition (the so-called "Aq" condition), a rigid propeller is subjected to severe 1-per -rev root bonding stresses which will increase blade weight. The propulative rotor ministres this problem by silosing blade flapping freedow in the manner of a helicopter rotor. The mathod of analysis for hover, transition, and forward flight is given in the following paragraphs. #### HOVER In the strip-analysis method of analysis the propeller blade is considered to be formed of several sections, each functioning in a two-disconsinnal flow field. The resultant elemental lift and drag forces acting on the profile are resolved just othrust and torque components which can be integrated to determine total thrust and torque of the blade. From vortex theory considerations, the velocity at any section is the resultant of the rotational velocity of a blade element and an interference velocity due to the trailing vortex system. The forces and velocities acting at a typical blade element are shown in the following velocity diagrem. Hover Velocity Diagram From the vortex theory the equation for induced flow at an element is: From fluid flow theory the lift on an element can be expressed by two equations: $$dL = \frac{C}{2}C_1U^2cdr$$ (2) Equating these two expressions results in an expression for circulation (P) as a function of the non-dimensional lift coefficient: $$\Gamma + \frac{1}{2} C_1 = 0 \tag{4}$$ and substituting (4) into equation (1) gives: From the velocity diagram $$ten \phi_i = \frac{mr_i}{tr}$$ (6) Substituting equation (A) into equation (B), letting x=r/R and replacing the expression for rotor wolldity by the notation (σ), results in where $\kappa_{\tilde{G}}$) is the Goldstein correction for blade tip energy loss. With a collective flap deflection, C_{χ} is given as $C_{\chi_{h^{-}}}$ a $*c_{\chi^{-}}d_{\chi^{-}}$ in the flap region, Using equation (2), the lift per unit spen is Reforring to the hover velocity diagram, the differential thrust and torque on any one blade section may be written $$\frac{d\Upsilon}{dr} = \frac{dL}{dr} \cos \phi_i - \frac{dD}{dr} \sin \phi_i \qquad (8)$$ $$\frac{dQ}{dr} \cdot r \left[\frac{dL}{dr} \sin \Phi_L + \frac{dD}{dr} \cos \Phi_L \right]$$ (2) By inserting dr = R dx and introducing the non-dimensional coefficients C_{χ} and $C_{\chi h}$, the relations for total elemental thrust and torque may be written $$\frac{47}{4k} * \frac{8}{2} e U^{k} \epsilon R \left(C_{i} \cos \Phi_{i} - C_{i} \sin \Phi_{i} \right)$$ (10) $$\frac{dQ}{dx} = P \frac{P}{2} U^k e^{R^2} x \left(C_1 \sin \varphi_k + C_2 \cos \varphi_k \right)$$ (11) where, in the flapped region, for C_{χ} in the above equation is substituted $C_{\chi^*} \otimes_{\pi^*} d$, and for C_{χ} is substituted $C_{d_b} + A_f + B_f d^2 + C_f d^2$ Again considering the velocity diagram, the resultant velocity at the section can be expressed as Bubstituting the preceding equation into (10) and (11), and introducing the dimensionless parameters C_{χ}/σ^{-} and C_{α}/σ results in $$d\frac{C_7}{\sigma} = \frac{\chi^2}{2} \left[C_1 \cos \varphi_1 - C_2 \sin \varphi_1 \right] \cos^2 \varphi_1 dx (13)$$ $$\frac{C_{0}}{dr} = \frac{\pi^{6}}{2} \left[C_{1} \sin \varphi_{1} + C_{2} \cos \varphi_{1} \right] \cos^{2} \varphi_{1} dx \qquad (11)$$ and since C as defined is equal to C $$\frac{C_{ij}}{dr} = \frac{\pi^{6}}{2} \left[C_{ij} \sin \varphi_{ij} + C_{ij} \cos \varphi_{ij} \right] \cos^{2} \varphi_{ij} d\pi \qquad (13)$$ The total forces produced by the rotor are then determined by a summation of the elemental thrust and torque slong the blade span. $$\frac{C_{T}}{\sigma} = \frac{1}{2} \int_{x_{-}}^{x_{0}} \left[C_{L} \cos \varphi_{L} - C_{L} \sin \varphi_{L} \right] \cos^{2}\varphi_{L} dx \qquad (16)$$ $$\frac{C_p}{\sigma} \approx \frac{1}{2} \int_{R_p}^{R_p} \left[C_{\chi} \sin \varphi_i + C_d \cos \varphi_{\chi} \right] \cos^2 \varphi_i \, dx \qquad (17)$$ In the original derivation of the vortex theory equations, the rotor wan assumed as a disc, that is, composed of an infinite number of biades. When calculating the performance of a rotor, a tip loss factor must be included to account for the reduction in thrust at the blade tip region incurred by air spillage about the blade tipe. In the present anxiess an allowance for the blade tip energy loss is included by including the Goldstein correction in the
determination of the induced angle at the blade section. Because the hiade does not extend to the centur of rotation the summation limits at the blade toboard and must be altered to include the presence of the hub and retention. For the snalysis, the integration for the thrust and power coefficients is extended to the 20 percent radius station. Applying the corrected limits of integration to equations (18) and (17) $$\begin{split} \frac{C_T}{\sigma} &= \frac{1}{2} \int_{-2}^{\lambda_c} \chi^2 \left[C_1 \cos \varphi_c - C_d \sin \varphi_c \right] \cos^2 \varphi_c \, dx \\ &+ \frac{1}{2} \int_{-2}^{1} \chi^2 \left[C_1 \cos \varphi_c - C_d \sin \varphi_c \right] \cos^4 \varphi_c \, dx \end{split}$$ $$\begin{split} \frac{C_p}{\sigma} &= \frac{i}{2} \int_{-2}^{R_1} \left[C_i \sin \varphi_i + C_d \cos \varphi_i \right] \cos^2 \varphi_i \, dx \\ &+ \frac{i}{2} \int_{R_1}^{R_2} \left[C_i \sin \varphi_i + C_d \cos \varphi_i \right] \cos^2 \varphi_i \, dx \end{split} \tag{19}$$ The results of calculations for the K-16B rotor are given in Figure 83. Figure 83 Static Thrust Performance Analysis #### PORVARD FLIGHT The forward flight performance equations were derived using the vortex theory in a manner similar to the hover analysis. The forces and velocities acting at a twoical blade element are shown in the following figure. Forward Plight Velocity Diagram The induced velocity at an element may be written $$\frac{BC_{i} = U}{SW = hin \Phi_{o}}$$ (20) Considering the velocity diagram with the assumption φ_i is a small angle and thus cos $\varphi_i \approx 1.0$, the resultant sectional velocity is $$\Phi_i = \tan \Phi_i = \frac{m'_i}{U}$$ $$\frac{dT}{dx} = B \frac{\rho}{2} U^{2} c R \left(C_{1} \cos \varphi_{n} + C_{d} \sin \varphi_{n} \right)$$ (21) $$\frac{dQ}{dz} = B \frac{c}{2} U' \cup R \left(C_1 \sin \phi_0 + C_2 \cos \phi_0 \right) \qquad (20)$$ Referring again to the sketch, the resultant elemental volucity is $% \left(1\right) =\left\{ 1\right\} 1\right\}$ Introducing this expression and the non-disersional coefficients C for and C for into equations (24) $$\frac{d}{dt} \frac{C_T}{dt} = \frac{\chi^2}{2} \left[\frac{C_L \cos \phi_0 - C_{d} \sin \phi_0}{\cos^2 \phi} \right] dx \tag{1.7}$$ $$d\frac{C_0}{\sigma} = d\frac{c_p}{\sigma} = \frac{x^b}{b} \left[\frac{c_{l_0} \sin \phi_0 + c_{l_0} - \sigma_0 \phi_0}{c_{l_0} + c_{l_0} - \sigma_0 \phi_0} \right] dx \tag{27}$$ The rotor total thrust and torque are determined by an integration of the preceding expressions, using the proper integration limits as described in the hover analysis. The final equations become $$\frac{G_{\tau}}{\sigma} = \frac{1}{2} \int_{-2}^{1} \left[\frac{G_{\tau} \cos \phi_{n} - G_{\eta} \sin \phi_{n}}{\cos^{2} \phi} \right] ds \qquad (2.5)$$ $$\frac{C_{p}}{\sigma} = \frac{1}{2} \int_{0}^{1} A \left[\frac{C_{1} + \cdots + C_{n} + C_{n} + \cdots + C_{n}}{cc_{n} + c_{n}} \right] dn$$ (3) The problem is to determine the thrust and power coefficients for the complete range of forward flight velocities. This is effected by clossing a range of blade angles compatible with the above. The procedure followed is similar to that for the hover analyses. Because these analyses involve iterative procedures, they have been programmed for machine solution. In hovering and high-spend forward flight, standard propeller vortex theory methods can be used for performance smallpols. In the transition regime, however, the inflow angles are no large these methods no longer apply. Accordingly, for an articulated propulsive rotor, helicopter actions such be used. Although this method is not as accurate as the strip analysis for static thrust, it can be used for general parametric studies for static thrust and power by meruly setting the advance ratio x to zero. During transition, the approach velocity is re-solved into components that are parallel and perpendicular to the shaft axis. The parallel component and the induced portion is non-dimensionalized with respect to tip speed and is designated A. The perpendicular component to also non-dimensionalized with respect to tip speed and is designated A. The transition power is a function of these two parameters an well as the components of the blade flapping action and the flap deflection. Rotor performance in transition is solved by an iterative numerical procedure of the blade flapping equation of motion total a motion of points in the azieuth cycle. It is essentially that described in Th 3766 (83) but with several improvements. Because the actual equation of motion is solved, there is no restriction on advance ratio, include ratio, or forward speed, and there are no small single sesumptions. It incorporates the seve MACA two-dimensional alifori data as the hover program, which includes both stall and Mach number effect, as well as the sease flap lift and drag characteristics. The equation also provides for the insertion of an arbitrary pitching velocity. It is also useful for manalyzing blace flapping in high-speed forward flight. The motion of a rotor blade is found by solving the differential equation of motion about the flapping binge. The blade is represented by a rigid line as shown in the figure. Its mans per unit length may vary along its length. It is constrained to stay in a plane which is rotating with constant speed, \$\Omega\$, about an axis called the control axis, so that no lag hings is considered. In this plane, the black is free to rotate about a point that is a distance "o" from the control axis, representing ar offset flapping hings. Each element of the blade is considered to have two forces acting on it -a centrifugal force and an aerodynamic force. The aerodynamic force is found under the assumption that each element of the blade behaves as a two-dimensional airluit in a unifors flow field identical to that of owin element of the rotor radius. The infine velocity parameter, λ , is assumed to be uniform over the inter disc. No fewthering action of the blade is considered because the motion is found with respect to the control or no-fewthering axis. The differential equation of motion about the liapping name, which expresses the equilibrium of the contributal and accompanic moment, with the inertia memori, is set up and colved numerically. The assumptions are: - Two-dimentional flow at each section; Ise of steady-state arriori data; Constant inflow velocity over the rotor disc. Constant rotational speed about the control Referring to the sketch, the differential equation of motion intained by equating the moments about the flapping little (1). $$I\ddot{\beta} = M_u = M_{\dot{q}} = M_{\dot{q}}$$ (31) The contritugal force, dF , on a portion of blade on' with mass made' is: and where Ω_t is the rotational velocity about the control axis, and (e * r' cos β_t) is the radius of the element dm' from that axis. The moment arm shout the flapping bings is (r'e) sin β_t , so the total centrifugal moment ts: $$\mathcal{H}_{k} = -\Omega^{2} \sin \frac{\pi}{2} \int_{\mathbb{R}^{N}} mr' \left(\hat{\mathbf{e}} + \mathbf{r}' \cdot \cos \hat{\mathbf{p}} \right) d\mathbf{r}'$$ $$= -\Omega^{2} \sin \hat{\mathbf{p}} \cos \hat{\mathbf{p}} \int_{\mathbb{R}^{N}} mr' d\mathbf{r}' + \Omega^{2} \sin \hat{\mathbf{p}} \int_{\mathbb{R}^{N}} mr' d\mathbf{r}'$$ (32) The aerodynamic force on a blade section is shown in the next electric. The velocity (U) is the reletive velocity composed of the composents U_p perpendicular to the control axis, and U_p parallel to it. The elementary forces acting on the blade are di_p perpendicular to U, and di_p parallel to it. These give rise to an elementary thrust force, dT_p, parallel to the control axis, and dP_p perpendicular to it, which are given by: $$dT_{\mu} = dL_{\mu} \cos \phi + dD_{\mu} \sin \phi$$ (13) $$dP_{\mu} = dD_{\mu} \cos \Phi = dL_{\mu} \sin \Phi$$ (34) The force dP is parallel to the flapping hings and produces no moment. The force dT is the mane at dY $_{\rm f}$ shown in the previous eketch, and has an arm r', so the $$M_{\tilde{a}} = \int_{a} (dL_{\tilde{a}} \cos \phi + dD_{\tilde{a}} \sin \phi) r' dr'$$ (35) Here, the integral is taken over that portion of the blade, A. that is serodynamically effective. Allorance can then be made for excluding the shank of the blade near the hinge in the lifting serodynamic effects. By using lift and drag coefficients based on the section chord, C, equation 35 can be written: $$\mathbf{M}_{\mathbf{A}} = \frac{1}{2} \mathbf{e} \int_{\mathbf{A}} \mathbf{r}^{2} \mathbf{c} \left(c_{1} \cos \sqrt{s} + c_{2} \sin \Phi \right) r^{2} dr^{2}$$ (56) where in the flap region C_{χ} is given as C_{χ} table $\sim d \circ \gamma_{\chi} d$ and C as C + A, + B, d + C, J , as in the hover The speed, U, can be expressed in terms of the flight speed, V, rotor angle of attack, ~C, rots-ional speed, H, inflow velocity parallel to the control axis, v, and arimuth angle, \(\phi\). Rotor angle of attack, ~C, is taken positive when the zoior is tilted back in the usual autogiro convention. The velocity due to fiapping, $r^*\beta$, is included in U_p . The velocities are: $U_{p} = V_{sin} \propto \cos \beta + V \cos \beta + V \cos \alpha \cos \psi \sin \beta + r' \hat{\beta}$ which can be non-dimensionalized as: $$\frac{U_{p}}{\Omega R} = \lambda \cos \beta - \lambda \cos \psi \sin \beta - x' \beta^{n}$$ (38) $$\frac{U_{T}}{4R} \cdot S + x \cos \beta + x \sin \psi \tag{39}$$ The inflow angle, $\boldsymbol{\varphi}$, is obtained from the preceding figure as: or: $$\phi = \tan^{-1} \frac{\lambda \cos \beta - \mu \cos \psi \sin \beta - x'\beta^{\frac{m}{2}}}{\left(\frac{\alpha}{2} + x'\cos \beta\right) + \mu \sin \psi}$$ (10) and the angle of attack, oC , as: $$+c_n + \Phi + \Phi - \Phi \tan J_a$$ (41) where d_3 represents the coupling between pitch and flapping. Along with the Mach number, u/a, wc_p , determines c_1 and c_n from mirroit section data. If the quantities V, \ll , v, Ω ,
Θ , θ_3 , a, and θ_3 are known, θ_3 can be found at any assauth, ψ . It can be shown that when a retor is rotated at constant angular velocity in inertial space about an axis perpendicular to the spin axis (precession about the "y" axis of the rotor, for instance), the rotor blades experience a vibratory flapping seems that would, if the blade were rigid, produce a net rotor rolling seems about the aircraft "x" axis. Thus, the behavior of an infinitely rigid rotor with respect to precessions! velocities would be exactly equivalent to a gyroscope operating with the wasse accular accessing force rocallers, approximate this? The articulated rotor, by virtue of its flapping hinges, cannot transmit blave flapping momente to the hub, and hence sumar react this vibratory gyroscopic flapping moment (due to precession about the "y" axia) by other means. "I does this by assuming a longitudinal flapping angle (with respect to a plane perpendicular to the spin axia) that produces a vibratory change in blade angle of attack. This is, turn produces an serodynamic flapping moment just sufficient to belance the gyroscopic flapping moment. This resultant tendency for the tip path plane to lag the sheft plane in un articulated rotor that is pre- mental flapping angle ($$\Delta \omega_{l_b} = \frac{-16 \, q}{2 \, \Omega}$$) produces a rotor moment about the aircraft og due to resultant force vector rotation and, where offuet flapping hinges are employed, his moment effects. Thus, the moment due to tip path plane lag to essentially a rotor damping in pitch contribution to the airframe. The aforementioned vibratory airload which results from the tip path plane lag is in a direction so that it subtracts from the airload on the retreating blade and increases the airload on the advancing blade for nose uppitching motion of the tip path plane. This tends to load that wide of the rotor disc most capable of carrying the load and, by unleading the side of the disc least capable of carrying load, provides retreating-blade stall relief. The expression for the additional flapping moment due to precession of the rotor in space can be independently derived and super-laposed upon the funpping equation of motion Consider a particle rotating at constant angular velocity ($\underline{\alpha}=\frac{d\psi}{dt}$) in the $z_{\rm c}$ y plane of a rectangular coordinate system. If this coordinate system is in turn rotating about ite "y" axis at an angular velocity $(q=\hat{T}')$ with respect to an inertial space sale system (x,y,z), the absolute accelerations of the same particle are developed as follows: The absolute positions of the particles are: $$\ddot{X} = -2r\Omega \sin \psi \sin \gamma \dot{T} + r\cos \psi \cos \gamma \dot{\gamma}^2 + r\Omega^2 \cos \psi \cos \gamma + r\cos \psi \sin \gamma \dot{\gamma}$$ $$\frac{st}{Y} = -\Omega^2 r \sin \psi \tag{4.9}$$ These acceleration can be resolved into the rotor axis system by: $$\ddot{X} = \ddot{X} \cos T + \ddot{Z} \sin T$$ $$\ddot{V} = \ddot{V}$$ $$\ddot{Z} = \ddot{Z} \cos T - \ddot{X} \sin T + 2 \sin T \sin \psi - r \ddot{T} \cos \psi$$ (1.) Only the " ϵ " acceleration is of interest because flapping moments are being considered here. The additional blade flapping moment is given by: $$\varphi \Sigma \Delta M = -\int_{0}^{R} dm$$ $$= \left(-2.1 \tilde{T} \sin \psi + \tilde{T} \cos \psi\right) \int_{0}^{R} r^{2} dm$$ (11) Thus, the equation of motion for a flapping rotor blade precessing at constant angular velocity ($\hat{\mathcal{T}}$ a g) may be written: It is convenient to write the equation in terms of hon-disensional quantities. To do this, β is considered a function of the salenth angle, ψ , rather than the time, t. Noting that for constant rotations: speed Ω , ψ , and t are related by $(\psi \in \Omega t)$, the time derivative of β can be changed to derivatives with respect to ψ as follows: $$\dot{\beta} = \frac{dt}{d\beta} = \Omega \frac{d\psi}{d\beta} = \Omega \beta^*$$ $$\hat{Q} = \frac{\gamma^2 t_1}{\eta_1 \hat{Q}} = V_1 \cdot \frac{\gamma^2 \hat{Q}}{\gamma_1 \hat{Q}} = V_2 \cdot \hat{Q}_{\bullet, \bullet}$$ Here the sateriuk denotes differentiation with respect to ψ . All langths are sade non-discosional by division by 0, the blade radius, and all selections by division by Ω , the tip speed. In this way the following dimensionless quantities are defined. $$x' = \partial_y R$$, $u_y = U_T / nR$, $u_p = U_p / nR$ Then, written non-dimensionally: $$\beta^{*2} = \frac{h_A + h_C + M_Y}{\alpha^2 I} \tag{46}$$ The calculation proceeds from an arbitrary starting point for any given combination of advance ratio, , , and collective pitch, &. inflow ratio, A, and cullective pitch, G. Initially, the blade is assumed to have a particular value of flapping angle B, and its first derivative ff at zero ariseth position. This starting assumption defines the institutement section angle of attack distribution of the serodynamic and inertia moments. The subsition of the serodynamic and inertia moments. The subsition of the serodynamic and inertia moments. The subsition of the sarodynamic for blade to brought through a number of complete revolutions until flapping convergence is achieved. Badial flow effects are accounted for by multiplying the profile torque and M-force by appropriate factors derived from IAS Pieprint 654 (61). The converged motion and the integrated rotor forces and numents are independent of the initial assumption of blade motion. The output from the programs consists of the integrated forque and forces along and perpendicular to the flight path as well as the conventional thrust and R-force. In addition, the flapping soltion is given, and the angle of attack distribution is given at every radial station and severy adjust, Rotor control as a single of attack is also origin for more figure 4. Although defined in this Transition's section. Although defined in this "transition" section, the flapping equilibrium equation is wall at all speeds II was used to calculate the lorserf diight flapping preprint on themse 52. To illustrate the object of blade proposition for invarid (light flapping defined as smallitted about one of section to the object of blade proposition of the object of blade as a smallitted about one was made. To invalid are shown in Figure 2. Figure 84 L-16b Rotor Translition Performance Figure 66 Effect Of Blade Characteristics on Longitudinal Flapping in Couraing Flaph #### BOTOM CONTROLLABILITY IN HOVERING PLIGHT The forces acting on a mass particle of a hinged rotor are as follows: The equilibrium of moments about the flapping hinge results in the equation: $$\int_{1}^{1} (x-\frac{1}{2})R dL = \int_{1}^{1} \left[x R^{2} \Omega^{2} (x-\frac{1}{2}) \beta + (x-\frac{1}{2})^{2} R^{2} \ddot{\beta} \right] dm \quad (47)$$ issuming single beemonic Classics $$(3 = -a_1 \cos \psi - b_1 \sin \psi)$$ $(5 = a_1 \cos \psi + b_1 \cos \psi)$ $(x - x) = (x - x)^2 + x(x - x)$ Substituting the expressions for \$ and \$ into $$\begin{split} \int_{3}^{1} (x-\overline{y}) dT &= (\Omega R)^{2} \int_{3}^{1} \left[(x-\overline{y})^{2} (a_{n} - a_{n} \cos \psi - b_{n} \sin \psi) \right. \\ &+ \overline{y} (x-\overline{y}) (a_{n} - a_{n} \cos \psi - b_{n} \sin \psi) \\ &+ (x-\overline{y})^{2} (a_{n} \cos \psi + b_{n} \sin \psi) \right] dm \end{split}$$ $$I_1 = R^3 \int_{\frac{\pi}{2}}^{1} (x - \overline{y})^2 dm$$ $$\overline{y} = \frac{3R^2}{1} \int_{\frac{\pi}{2}}^{1} (x - \overline{y}) dm$$ $$\frac{M_1}{L_0^4} = a_*(1+3) - a_1 3 \cos \psi - b_1 3 \sin \psi \qquad (10)$$ $$dL = \frac{\rho}{2} (nR)^2 x^2 can$$ (...) $$\infty = \Theta + \Phi + T_w(x-.75) - \infty_u - \theta + \theta + T_w(x-.75)$$ and $-\frac{\lambda}{\kappa}$ for Φ for hovering flight. Substituting the above harmonic components of β and δ' into equation 50, the expression for dries becomes $$\frac{dL}{dx} = \frac{\rho}{2} \left(\Omega R \right)^2 \cos Rx^2 \left[\Theta + T_{tot} \left(x - .75 \right) - \frac{\lambda}{x} - a_0 \tanh a_0 \right]$$ $$+ a_1 \tan a_0^2 \cosh \psi + b_1 \tanh a_0^2 \sinh \psi - a_1 \left(\frac{\lambda - \frac{7}{4}}{x} \right) \cot \psi + 1$$ $$+ b_1 \left(\frac{x - \frac{7}{4}}{x} \right) \cos \psi + a_2 + a_3 + a_4 + a_5 a$$ $$\frac{dL}{dx} = \frac{dL_0}{dx} = \frac{dL_1}{dx} + \frac{dL_2}{dx} + \frac{dL_3}{dx} + \frac{dL_4}{dx} + \frac{dL_5}{dx} \frac{$$ $$\frac{dL_{o}}{dx} = \frac{e}{2} \left(\Omega R \right)^{2} R c_{0} x^{2} \left[6 + T_{cr} \left(x - .75 \right) - a_{o} \tan d_{0} - \frac{\lambda}{R} - c_{cr} d_{o} \right]$$ $$\frac{dL_{1}}{dx} = \frac{e}{2} \left(\Omega R \right)^{2} R c_{0} x^{2} \left[b_{1} \tan d_{0} - \left(\frac{x - \overline{Y}}{R} \right) a_{1} - c_{cr} d_{1} \right] \left(1 - k \right) (52)$$ $$\frac{dL_{2}}{dx} = \frac{e}{2} \left(\Omega R \right)^{2} R c_{0} x^{2} \left[\left(\frac{x - \overline{Y}}{R} \right) b_{1} + a_{1} t c_{1} d_{0} - c_{cr} d_{2} \right] \left(1 - k \right)$$ Substituting the harmonic components into squation 47, integrating issually utilizing the inertial components of uquation 46, the following equations in a and b are obtained. $$\left(\frac{1}{4} - \frac{2}{3} \right) (1-k) a_1 = \left(\frac{1}{4} - \frac{3}{3}\right) (1-k) b_1 \tan d_3$$ $$+ \infty_d d_1 \left[\frac{1-x_1^4}{4} - \frac{3}{3} \left(\frac{1-y_1^4}{3} \right) \right] (1-k) = \frac{2b_1 I_1 J}{6a_1 R^4}$$ $$= \frac{2J}{\gamma} b_1 = \left(\frac{1}{4} - \frac{3}{3}\right) (1-k) a_1 \tan d_3 = \left(\frac{1}{4} - \frac{2}{3} \right) (1-k) b_1$$ $$+ \infty_d d_3 \left[\frac{1-x_1^4}{4} - \frac{3}{3} \left(\frac{1-x_1^4}{3} \right) \right] (1-k) = \frac{2a_1 I_1 J}{6a_1 R^4} = \frac{2J}{\gamma} a_1$$ $$(54)$$ $$P = \frac{1}{4} - \frac{2}{3} \tilde{J} \qquad E = \frac{1 - x_1^4}{3}$$ $$H = \frac{1 - x_1^4}{4} \qquad J = \frac{3}{3}$$ Using Kramar's rule and equation 54, the expressions for a and b are obtained, assuming no d_2 is
introduced. $$b_{1} = \frac{-P \sim_{2} d_{1} \left(H - \overline{J} E\right)}{P^{2} \left[\frac{2 \frac{d}{2} f}{(1 - h)} + J \tanh d_{3}\right]^{2}}$$ $$b_{1} = \frac{-c_{2} d_{1} \left(H - \overline{J} E\right) \left[\left(\frac{2}{1 - h}\right) \frac{d}{2} f + J \tanh d_{3}\right]^{2}}{P^{2} + \left[\frac{2 \frac{d}{2} f}{1 - h} f + J \tanh d_{3}\right]^{2}}$$ $$\frac{\partial}{\partial d_1} = \frac{P_{\text{set}} d_1 \left(H \cdot \hat{J}_E \right)}{P^2 + \left[\frac{2}{(1-h)} \frac{3}{2} \right]^2 + J \tan d_3}$$ $$\frac{\partial}{\partial d_1} = \frac{\omega_{\text{set}} \left(H - \hat{J}_E \right) \left[\frac{2}{(1-h)} \frac{3}{2} \right]^2 + J \tan d_3}{P^2 + \left[\frac{2}{(1-h)} \frac{3}{2} \right]^2 + J \tan d_3}$$ and statistly if ϕ_2' were applied but not ϕ_1' $$\frac{3d_{2}}{3d_{2}} = \frac{P \ll_{p} (H - \frac{1}{2}E)}{P^{2} + \left[\frac{7}{(1-h)} + J \tan \frac{1}{2}\right]^{2}}$$ $$\frac{\partial \mathcal{L}_{1}}{\partial d_{2}} = \frac{-c_{d}\left(H - \overline{J}E\left[\frac{2|\mathcal{J}/\chi}{(1-K)} + J \tan d_{2}\right]\right)}{P^{2} + \left[\frac{2|\mathcal{J}/\chi}{(1-K)} + J \tan d_{2}\right]^{2}}$$ The flap-flapping phase angle, $\Delta \psi$, then is: These are the equations used to generate Figure 84. The important variables are seen to be 3/k . 3, and of one tank flap parameters. C is introduced through (1-k). #### CTCLIC THYLOW \ JATTON The "k" factor introduced in the previous section to account for excise inflow variation is now derived Data cotained from the E-16 test rig indicated that both the cyclic sensitivity and the phase angle were substantially less than that prescreed by the theory of Meyer and Palabells (52). This reduction in control ability could not be attributed to a reduction in flap lift effectiveness alone, because this would alter only the magnitude of the response but not the phase angle. Because the effect the phase angle, because the offset flapping hings increases the natural frequency of the blade, the system is operating below resumance, and With the system non-resonant, a cyclic variation in C_L must exist in order to cause the blades to flap. This cyclic variation of C_L implies a cyclic variation of inflow which may be calculated as follows: For a rotor operating under helicopter forward flight conditions (transition), the elemental inrust obtained from blade element considerations in $$\frac{dT}{dt} = \frac{9}{2} U^2 C_1 B c \tag{35}$$ If ϕ is small, $\cos \phi$ as 1.0, and n^2 can be approximated by Inserting the expression for velocity, this equation becomes: $\label{eq:constraint} \boldsymbol{\xi} = \boldsymbol{\xi} \cdot \boldsymbol{\xi} + - \boldsymbol{\xi} \cdot \boldsymbol{\xi} + \boldsymbol{\xi} \cdot \boldsymbol{\xi} + \boldsymbol{\xi} - \boldsymbol{\xi} \cdot \boldsymbol{\xi} + \boldsymbol{\xi} - -$ $$\frac{dT}{dr} = \frac{\rho}{2} \Omega^2 R^2 (3 + \mu_0 \sin \psi)^2 C_1 P_0$$ (36) From momentum theory the elemental thrust is $$\frac{dT}{dr} = 4\pi r R \left(V \sin r + v \right) v \qquad (5)$$ This counties can also be written: $$\frac{dT}{dr} + 4\pi r \varepsilon \left(\Omega R\right)^2 \left[\frac{V \sin Y}{\Omega R} + \frac{v}{\Omega R} \right] \frac{v}{\Omega R} \tag{50}$$ Equating the expressions for elemental thrust as obtained from the two theories yields. Considering an increment in lift coefficient that results in a corresponding increment in induced velocity: $$\sigma \Delta C_{l} \left(x + \mu_{l} \sin \psi \right)^{2} = \left[\frac{\partial \chi}{(\Omega R)^{l}} V \sin \theta + \frac{\partial \chi_{l}}{(\Omega R)^{l}} \Delta V \right] + \frac{\partial \chi_{l}}{(\Omega R)^{l}} \Delta V$$ (60) From the forward flight velocity diagram: A is defined as: $$\lambda_i = \frac{\sqrt{\sin i} + v}{\cos i} \tag{61}$$ Substituting this equation and the expression for induced velocity from Gessow and Meyers (63), the previous equation becomes: $$\sigma\Delta C_1 \left(x + \mu_1 \sin \psi \right)^2 = \delta x \left[\lambda_1 + \frac{C_T}{2 \left(\lambda_1^2 + \mu_1^2 \right)^{1/2}} \right] \Delta V$$ (62) Considering the velocities normal to, and it, the plane of the disc, an expression for inflow angle is obtained: $$\varphi = \frac{V \sin \delta + V}{(k + \mu_1 \sin \psi) \Omega R}$$ (63) Upon differentiation this reduces to: $$\Delta \psi = \frac{\Delta v}{(x + \mu_1 \sin \psi) \Omega R}$$ (64) Substituting the expression for $\hat{\boldsymbol{\omega}}$ v into equation 62 yields: $$\sigma_{\Delta C_{\ell}}(x + \mu_{\ell} + \lambda_{\ell} + \psi)^{2} = \frac{\partial x}{\partial R} \left[\lambda_{i} + \frac{C_{T}}{2(\lambda^{2} + \mu^{2})^{1/4}} \right]$$ $$\Delta \varphi(x + \mu_{\ell} + \lambda_{\ell}) \Omega R$$ (65) now $$\Delta C_{\lambda} = a \Delta \sim -a (\Delta \Theta - \Delta \varphi)$$ (66) replacing $\Delta \, \mathcal{Z}_L$ by this expression in the provious equation gives: $$\sigma_{\mathbf{A}}(\Delta \Theta - \Delta \mathbf{q})(\mathbf{x} + \mathbf{j}_{\mathbf{A}_{1}} \mathbf{b}_{1} \mathbf{n} \phi) = \delta_{\mathbf{X}} \left[\lambda_{1} + \frac{C_{T}}{2(\lambda_{1}^{2} + \mathbf{j}_{\mathbf{A}_{1}}^{2})^{1/2}} \Delta \mathbf{q}^{2} \right]$$ (67) Solving for \$\Delta \phi\$ yields: $$\Delta \psi = \frac{\Delta \Theta}{1 + \left[\lambda_1 + \frac{C_1}{2(\lambda_1^2 + \mu_1)^{1/2}}\right]} \frac{\delta x}{\sigma \Delta(x + \mu_1 \sin \psi)}$$ (12) is (Vain Y+V) . Then by definition $\lambda_i = \frac{V_{\text{bin}} + \nu}{4R}$ and in a Venter. the helicopter autorotative velocity diagram the flow through the rotor disc in $\left(V_{kin}, e^{-\gamma t} \right)$, and λ is defined as $\lambda = \frac{Vain + v}{\Omega R}$ and $\mu = \frac{Vco.}{\Omega R}$ Considering the two diagrams, it is observed and δ = -wC which, when substituted into the expression for propeller inflow yields: $$\lambda_1 = \frac{V_{3,1,0} + V_{1,0}}{\Omega R}$$ $$\lambda_1 = -\lambda$$ thus: Substituting this expression for λ into the ition for $\Delta \ll y$ folds: A-c = AG(1-k) The expression in brackets, (i-k), accounts for the cyclic inflow variation. The damping force due to flag-ting velocity is thus reduced by this factor. It can be shown that the aforementioned factor appears for any cyclic variation, be it disprine feathering, or file input. When the equations of Meyer and Falabella (2) are modified to include this total, the agreement with the test data was substantially improved with regard to both controllability and phase angle. Controllability must, however, be increased to the amount originally estimated, and may be secured by the inclusion of a negative of a hinge. The effect of ω_A is shown on Figure 86 for the K-16 simplene. . It is significant to note that from a blade dynamics standpoint, negative $-\omega_3^*$ effectively lowers the natural frequency towards one-res, or in other words, tends to remove the hinge offset from the rotor dynamics and in make the equivalent of a tuntering rotor. It is emphasized that the amount of \mathscr{A}_3 used does not reduce the etablity below that of an equivalent more #### HITU MOMENT The inertia moment per blade is: in) average moment in the longitudinal direction $$H_{1} = -\frac{ab}{2\pi} \int_{-\infty}^{\infty} \left[dL - (r-e) \ddot{\beta} dm \right] \cos \psi d\psi dx \qquad (71)$$ $$\vec{J} = \frac{\sigma}{R} , \quad x = \frac{r}{R}$$ $$M_{y} = \frac{3bR}{2\pi} \int_{0}^{2\pi} \int_{3}^{4\pi} \left[4k - (x - 3)R \beta dm \right] \exp (x + y) x$$ $$\frac{\hat{P} = \mathbf{a}_{0} - \mathbf{a}_{1} \cos \psi + \mathbf{b}_{1} \sin \psi}{\hat{P}_{1} - \mathbf{a}_{1} \cos \psi + \mathbf{b}_{1} \sin \psi}$$ (2) The inertia part of equation 72 is: $$M_{W_{i}} = \frac{36R^{2}}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \tilde{\beta} \cos \psi \, dm \, d\psi - \frac{3^{2}6R^{2}}{2\pi}$$ $$\int_{0}^{2\pi} \int_{0}^{2\pi} \tilde{\beta} \cos \psi \, dm \, d\psi$$ (74) . Side lituting the expression to: $\stackrel{\hookrightarrow}{P}$ (equation 23) into equation 74 and remembering that: the following to obtain d $$M_{31} = \frac{\Delta^{2} \frac{3}{5} R^{2}}{2\pi} \int_{0}^{2\pi} \int_{0}^{1} \lambda_{d_{1}} \cos \psi \, dm \, d\psi$$ $$= \frac{\Delta^{2} \frac{3}{5} R^{2}}{2\pi} \int_{0}^{2\pi} \int_{0}^{1} \lambda_{d_{1}} \cos \psi \, dm \, d\psi$$ $$N_{iq_{i}} = \Omega^{2} \frac{E}{2} R^{2} A_{i} 3 \int_{4}^{1} (x-3) dx$$ If $$\frac{3R^2}{l_1}\int_{\xi}^{l_1} (x-\xi) dm$$ is called 3 Then equation 76 becomes $$M_{W_{i}} = \frac{h}{2} n^{2} a_{i} I_{i} J \qquad (2.5)$$ This is the principle part of the bub moment and is identical to that gives by Mayor and Fibbblic (2), but the arrodynamic shear that follows can contribute an appreciable percentage. For the lift part: $$M_{SL} = -\frac{3bR}{2\pi} \int_{0}^{2\pi} \int_{0}^{1} \frac{dx}{dx} \cos \psi \, dx \, d\psi$$ (7.) Following the procedure of the control equations for blade section mode of attack, and assuming small angles for it; and. $$\frac{dL}{dx} = \frac{e}{2} \cdot a_{1} \left(a_{1}H \right)^{2} R \left(x \cdot s_{1} \cdot s_{1}n \cdot \psi \right)^{2} \left[\Theta - P \cdot t_{1}n \cdot d_{2} \right] \\ + T_{nr} \left(x - a_{1}75 \right) + \frac{\lambda}{2 \cdot a_{1}n \cdot s_{1}n \cdot \psi} - \frac{(x - 3)(1 - K)a_{1}}{2 \cdot a_{1}n \cdot s_{1}n \cdot \psi} \cdot s_{1}n \cdot \psi \\ + \frac{(x - 3)(1 - K)b_{1}}{2 \cdot a_{1}n \cdot \psi} \cdot c_{1}n \cdot \psi - \frac{\lambda a_{2}}{2 \cdot a_{1}n \cdot \psi} \cdot c_{2}n \cdot \psi \\ + \frac{\lambda a_{1}(1 - K)b_{1}}{2 \cdot (x \cdot a_{1}n \cdot \psi)} + \frac{(\lambda - 3)(1 - K)b_{1}}{2 \cdot (\lambda \cdot a_{1}n \cdot \psi)} \cdot c_{2}n \cdot \psi \\ + \frac{\lambda a_{1}(1 - K)b_{1}}{2 \cdot (x \cdot a_{1}n \cdot \psi)} \cdot s_{1}n \cdot \psi \cdot c_{2}n \cdot \psi \\ - w_{nr} \left(s_{n}^{2} + s_{1}^{2} \left(1 - K \right) s_{1}n \cdot \psi + d_{2}^{2} \left(1 - K \right) c_{2}n \cdot \psi \right) \right]$$ Substituting this expression for dL dx into equation 76 and integrating azimuthally, the
following is obtained. $$\begin{aligned} \mathbf{N}_{V_{L}} &= -\frac{3}{3} \ln R^{2} \frac{n^{2}}{2} \sin \left(R \mathbf{R} \right)^{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \left(a_{1} \tan d_{8} \left(\mathbf{I} - \mathbf{K} \right) \left[\frac{x^{2}}{2} + \frac{x}{2} \right] dx \\ &= - \ln a_{0} \frac{x}{2} dx + b_{1} \frac{(x - \frac{3}{3})(\mathbf{I} - \mathbf{K})}{2} \cos dx \\ &+ \frac{x \ln^{2} \left(\mathbf{I} - \mathbf{K} \right) b_{1}}{8} dx \\ &= - \ln d_{2} \left(\mathbf{I} - \mathbf{K} \right) \frac{x^{2}}{2} dx - \ln d_{2} \left(\frac{\mathbf{I} - \mathbf{K}}{8} \right) \ln^{2} dx \end{aligned}$$ Radial integration yields $$M_{W_{k}} = \frac{b_{1}l_{1}h_{1}\alpha^{2}}{4} \left[\lim_{x \to \infty} \frac{3 - \frac{4}{5}^{4}}{2} - a_{1} \tan d_{3} \left(1 - k \right) \right]$$ $$\left\{ \frac{\frac{4}{3} - \frac{4}{5}^{4}}{3} + \lim_{x \to \infty} \left(3 - \frac{4}{5}^{8} \right) \right\}$$ $$-b_{1} \left(1 - k \right) \left\{ \frac{\frac{4}{3} - \frac{2}{5}^{8}}{3} + \frac{2}{6}^{4} + \frac{2}{6}^{4} \left(3 - \frac{5}{5}^{8} \right) \right\}$$ $$+ \lim_{x \to \infty} \frac{d_{2}}{d_{2}} \left(1 - k \right) \left\{ \frac{1 - x^{4}}{3} + \frac{2}{6}^{4} \left(1 - x_{4} \right) \right\} \right]$$ (31) For convenience the offset and flap constants are A = $$\frac{1-3^{3}}{3}$$ N = $\frac{1}{3} - \frac{3}{2} + \frac{3^{6}}{6}$ B = $1-3$ E = $\frac{1-3^{6}}{3}$ D = $\frac{1-3^{2}}{2}$ F = $1-x_1$ The total hub-komen; acrodynamic and inertia, incomes: $$M_{\frac{1}{2}} = \frac{b}{a} \mathbb{I}_{i_{1}} \times \mathbb{I}_{i_{2}} \left[\frac{1}{a} a_{i_{1}} + \frac{3}{2} \left\{ \int_{A} A_{a_{1}} D \right] \right]$$ $$-a_{i_{1}} + a_{i_{2}} d_{i_{1}} (i-k) \left(A + \int_{A} A_{a_{1}} D \right)$$ $$-b_{i_{1}} (i-k) \left(N + \frac{M^{3}}{4} B \right)$$ $$+ ac_{i_{1}} d_{i_{2}} (i-k) \left(E + \frac{M^{3}}{4} C \right) \right\}$$ $$\left[(1-k) \left(B + \frac{M^{3}}{4} C \right) \right]$$ The principle difference between equation 82 and that given by Meyer and Feinbells (62) are the terms containing w^{α}_{β} , flap characteristics w^{α}_{β} , E. F. and the cyclic inflow. The partial derivative with respect to a lianning becomes: $$\frac{\partial M_d}{\partial a_1} = \frac{b}{2} I_1 \nmid \Omega^2 \left[\frac{3}{2} + \frac{3}{2} \tan \theta_0 (1-k) (A + \mu^2 b) \right]$$ --- have --- --- --- --- --- --- --- --- --- $$\frac{2M_{Y}}{2^{2}a_{1}}=\frac{b}{2}I_{1}\Omega^{2}\left[3+\frac{3}{2}t\tan\theta_{3}\left(1-k\right)A\right]$$ Equation 82 was used to construct the upper part of Figure . A check of the relative importance of the first and second terms inniciates that the second term, because of aerodynamic shear, amounts to 13 percent of the inertia term for the K-16B. Ratur Control Mosent Security Ity #### LONGITUDINAL TRIE AND CONTROL KAC Report G-113-4(r) presents a granical ection that is amenable to be near solution for triving an arrighme. The following method is because one pt that wishing a computer is capacity for iterative longs. This computer method also allows for prevent improvements to be made over the measual method, one of which is the inclusion of rotor control equations as an integral part of the till- ring process. The procedure begins with a balance of forces, vertical and longitudinal, and deferrings the velocity at which a particular thrust conficient furnishes equilineium. It is then put into rement balance uning roter and clevator, iterating until trin is attained. The sketch defines a number of sigles that are periment to the solution. From the exerch, the longitudinal ionce belance equation becomes: $$X = NT \cos T' - NTa' \sin T' + NJ \cos (T'' + i_j)$$ $$-(i_j + L_{NAC}) \sin (T' - oc_w) - (D_s + D_{NAC}) \cos (T' - oc_w)$$ $$-D_m - D_s - D_s - W \sin Y$$ (NJ) and the Z countron $$2 = -NT \sin T' - NT a' \cos T' - NU \sin (T'' + i_{\frac{1}{2}})$$ $-(L_3 + L_{MAL}) \cos (T' - \infty_w) + (D_3 + D_{MAL}) \sin (T' - \infty_w)$ $+ W \cos T - L_R - L_4 - L_4$ (*1) The thrust can be factored out of each equation (198) $$T = \frac{1}{N(\cos T' - 8' \sin T')} \left[\left(L_S + L_{NAC} \right) \sin \left(T' - \infty_W \right) + \left(D_S + D_{NAC} \right) \cos \left(T' - \infty_W \right) + W \sin \theta \right]$$ $$= N J \cos \left(T'' + L_S \right) + D_R + D_L + D_L + X$$ (ab) $$T = \frac{1}{N(\sin T' + a' \sin T')} \left[-(L_s + L_{NAL}) \cos (T' - c_w) + (D_s + D_{NAL}) \sin (T' - c_w) + W \cos t' - NJ \sin (T'' + L_1) - L_R - L_1 - L_2 - E \right]$$ (hii) Equating both expressions for 1, makin, $P = \cos T' - \mathbf{d}' \sin T'$. $\mathbf{Q} = \sin T' + \mathbf{d}' \cos T'$, and combining $u_0 + u_{Net}$ as $v_{NN} = v_{Net}$, and $v_{NN} = v_{Net}$. $$\begin{split} & \left(\cos \omega_{w} - a^{2} \sin \omega_{w}\right) L_{SN} + \left(\sin \omega_{w} + a^{2} \cos \omega_{w}\right) D_{SN} \\ & + Q \, NJ \cos \left(\mathcal{T}'' + L_{1}'\right) + P \, NJ \sin \left(\mathcal{T}'' + L_{1}'\right) \\ & + Q \left(W \sin k' + D_{R} + D_{L}' + D_{L}' + Cos \mathcal{T}'' + \lambda\right) \\ & - P \left(W \cos k' - L_{R}' - L_{L}' - L_{L}' - L_{NL}' \cos \mathcal{T}'' - Z\right) = 0 \end{split}$$ Letting Le cos \ll_w - 2 sin \sim_w . At sin \sim_w - 3 so \sim_w , and rearranging for equilibrium to occupy $$L_{3N}L + D_{3N}M + QNJ\cos (T'' + i_j)$$ + $Q(D_R + D_f + D_f + D_{NAL} - o_T'') + PNJ\sin (T'' + i_j)$ (N) + $P(L_R + L_f + L_f + u_{NAL}\cos T'') = W(F-o_b - Q\sin b)$ Placing this equation in dueltherent for a countries ordinary lift and drap coefficients can be in readily obtinated: $$\frac{1}{P \cos b - Q \sin b} \left[\left(C_{L_{3}} + C_{L_{NAL}} \right) q_{res} S_{s} L + \omega_{0} q_{res} S_{s} M \right]$$ $$+ Q N J'' q'' S \cos \left(T'' + i_{j} \right) + Q \left(C_{D_{R}} q S_{R} + C_{D_{j}} q S_{s} + C_{D_{j}} q S_{s} \right)$$ $$+ C_{D_{q}} \frac{q_{q}}{q} S_{q} q \right) + Q C_{D_{NAC}} q_{res} S_{NAC} \cos T''$$ $$+ P N J' q'' S \sin \left(T'' + i_{j} \right) + P C_{L_{NAC}} q_{res} S_{NAC} \cos T''$$ $$+ P \left(C_{L_{R}} S_{R} + C_{L_{q}} S_{j} \right) q + P C_{L_{q}} \frac{q_{q}}{q} q S_{q} \right] = W$$ $$(H9)$$ Dividing through by q"S and calling the expression in the brackets $\mathbf{X}_{\underline{\mathbf{g}}}$: and recalling that from G-113-4: $q^{H} = \frac{q}{1 - \frac{1}{L^{2}}}$ or the dynamic pressure at which sustained equilibrium flight at a given weight and $T_{\vec{C}}^{\pm}$ is attained. Equation 89 contains three separate dynamic resource which must be reduced to a common basis: - the free stream dynamic pressure; - the theoretical dynamic pressure in a fully developed slipstream; - the actual resultant dynamic pressure at the particular point in the slipstream under consideration. To determine the expressions for $q_{\rm cos}$, λ , cc_R , and cc_g , in the transition flight regime, reference is made to the next sketch: From momentum theory, at the rotor disc: $T = 2e\pi R^2 \left(v V_i + v^2 \right) \quad \text{where } v \text{ is the induced velocity, or:}$ $v^2 + v V_i = \frac{T}{2e\pi R^2} = 0$ $$v = \frac{V_i}{2} \pm \frac{V_i}{2} \sqrt{1 + \frac{2T}{e^{\pi R^2 V_i^2}}}$$ The total intle . velocity at the roter disc is therefore: $$V_{intlow} = -V_i - V_i \left[-\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{2C_T}{(N_R^2)^2 \cos^2 T'}} \right]$$ At any point in the slipstream: $$V_{intlow} = -V_i - 2K_iV_i \left[-\frac{1}{2} + \frac{1}{2}\sqrt{i + \frac{2C_T}{(\frac{V}{\Omega R})^2 \cos^2 \gamma^2}} \right]$$ (90) where $V_k = V \cos T'$ and k_1 is the ratio of the actual slipstream velocity to the theoretical fully developed blipstream (G-113-4). Referring to the shetch, $$V_{\text{max}}^2 = V^2 \cos^2 T'$$ $\left[1 + K_1 \left\{ -1 + \sqrt{1 + \frac{2 C_T}{(\Omega R)^2 \cos^2 T'}} \right\} \right] + V^2 \sin^2 T'$ which upon expansion leads to: $$V_{res}^{2} = V^{2} \left[1 - 2h_{1} \cos T \left(1 - h_{1} \right) \left(\cos T - \frac{2C_{T}}{\sqrt{\Omega R}} \right)^{2} \cos^{2} T \right]$$ $$+ k_{1}^{2} \frac{T_{r}^{-1}}{1 - T_{c}^{-1}}$$ Again from G-113-4: $$C_{T} = \frac{1}{2} \left(\frac{V}{\Omega R} \right)^{2} \frac{T_{c}^{"}}{1 - T_{c}^{2}}$$ $$\begin{split} q_{res} &= q \left[i - 2k_1 \cos \mathcal{T}' \left(i - k_1 \right) \left(\cos \mathcal{T}' - \sqrt{\cos^2 \mathcal{T}' + \frac{T_c''}{1 \cdot T_c''}} \right) \right. \\ &+ \left. k_1^2 \cdot \frac{T_c'''}{1 - T_c''} \right] \end{split} \tag{91}$$ Referring to equation on $$V_{\text{inflow}} = -V\cos 7' \left[1 + K_1 \left(-1 + \sqrt{1 + \frac{2C_T}{\left(\frac{V}{RR}\right)^2 \cos^2 7'}} \right) \right]$$ $$tan = C_{w} = \frac{\frac{Vadvante}{V_{inflow}}}{V_{cos}T'\left[1 + k_{i}\left(-l + \sqrt{1 + \left(\frac{V}{N}\right)^{2}cos^{2}T'}\right)\right]}$$ $$\frac{\tan \tau'}{1 + k_1 \left[-l \sqrt{1 + \frac{2 \iota_T}{\left(\frac{V}{\Omega R}\right)^3 \cos^2 T'}} \right]} \tag{34}$$ and the inflow ratio, A , is $$\lambda = -\frac{V}{\Omega R} \cos \mathcal{T}' \left[1 + k_1 \left(-1 + \sqrt{1 + \frac{2C_T}{\left(\frac{V}{\Omega R}\right)^2 \cos^2 \mathcal{T}}} \right) \right] \quad (10)$$ This is the same expression for λ that sould be obtained from the equation given by Gerson and Myers (77), sensity. $$\lambda = \frac{-c_{1/2}}{\sqrt{\lambda^{2} + \omega^{2}}} - \frac{V}{nR} \cos T'$$ assuming $\Delta x^{2} \ll \lambda^{2}$ From G-118-4 is also obtained the two additional expressions: $$q_{\text{max}} = q \frac{\sin^2 T}{\sin^2 \pi c} \tag{94}$$ and The component parts of equation 89 are now given in terms of the theoretical alignment, dynamic pressure q": $$\begin{split} & L_{a} = NC_{L_{a}} \, v_{t+a} \cdot S_{b} \\ & = N \left(\Delta C_{L_{b}} + C_{L_{wc_{a}}} \cdot c_{w} \right) q^{w} \, \frac{3 \cdot n^{3} \, T^{w}}{3 \cdot n^{3} \cdot c_{w}} \, \left(1 - T_{c}^{w} \right) S_{b} \\ & L_{MAC} = N \, C_{L_{MAC}} \, v_{t+ab}^{c} \cdot S_{b} \\ & = N \left(\Delta C_{L_{w}} + C_{L_{ac_{m}}} \cdot c_{w}^{c} \right) q^{w} \, \frac{3 \cdot n^{3} \, T^{w}}{3 \cdot n^{3} \cdot
c_{w}} \, \left(1 - T_{c}^{w} \right) S_{b} \\ & C_{L_{ball}}^{w} = N \left[\Delta C_{L_{b}} + \Delta C_{L_{w}} + c_{w} \left(C_{L_{ac_{b}}} + C_{L_{cc_{m}}} \right) \right] \\ & \frac{3 \cdot n^{3} \, T^{w}}{3 \cdot n^{3} \cdot c_{w}} \, \left(1 - T_{c}^{w} \right) \, \frac{S_{b}}{S} \end{split}$$ Sicilarly: $$\begin{split} &C_{D_{3w}}^{a} = N\left(C_{D_{0}_{b}} + \frac{C_{L_{b}}^{2}}{\pi r R_{0}} + \frac{F_{nac}}{S_{nac}}\right) \frac{3 \cdot n^{2} \cdot T''}{9 \cdot n^{2} \cdot c_{w}} \left(1 - T_{c}^{*}\right) \frac{S_{5}}{S} \\ &C_{L_{c}}^{*} = \left(\Delta C_{L_{R}} + C_{L_{c}} \cdot T''\right) \left(1 - T_{c}^{*}\right) \frac{S_{R}}{S} \\ &C_{D_{R}}^{*} = \left(\Delta C_{L_{R}} + C_{L_{c}} \cdot T''\right) \left(1 - T_{c}^{*}\right) \frac{S_{R}}{S} \\ &C_{D_{c}}^{*} = \left(\Delta C_{L_{c}} + C_{L_{cc}} \cdot c_{c}\right) \left(1 - T_{c}^{*}\right) \frac{S_{c}}{S} \\ &C_{D_{c}}^{*} = \left(\Delta C_{L_{c}} + C_{L_{cc}} \cdot c_{c}\right) \left(1 - T_{c}^{*}\right) \frac{S_{c}}{S} \\ &C_{D_{c}}^{*} = \left(C_{D_{0}_{c}} + \frac{C_{L_{c}}^{*}}{\pi r R_{0}}\right) \left(1 - T_{c}^{*}\right) \frac{S_{c}}{S} \\ &C_{L_{c}}^{*} = C_{L_{c}} \cdot \left(c_{c} + c_{C_{c}} - K_{c} \cdot T'' + a_{C_{d}} \cdot \frac{\partial J_{c}}{J_{d_{L}}} \cdot d_{L_{c}}\right) \\ &C_{L_{c}}^{*} = C_{L_{c}} \cdot \frac{S_{c}}{2} \cdot \frac{S_{c}}{2} \cdot \left(1 - T_{c}^{*}\right) \\ &C_{D_{c}}^{*} = \left(C_{D_{0}_{c}} + \frac{C_{L_{c}}^{*}}{\pi r R_{0}}\right) \cdot \frac{S_{c}}{2} \cdot \left(1 - T_{c}^{*}\right) \\ &C_{D_{c}}^{*} = \left(C_{D_{0}_{c}} + \frac{C_{L_{c}}^{*}}{\pi r R_{0}}\right) \cdot \frac{S_{c}}{2} \cdot \left(1 - T_{c}^{*}\right) \\ &J = q^{*} \cdot S\left(k_{2} \cdot T_{c}^{*} + \kappa_{3}\right) \cdot \frac{1}{c} \cdot J^{*} = \frac{k_{1} \cdot T_{c}^{*} + \kappa_{3}}{S} \end{split}$$ Because: $$\sin k \cdot a_{d}$$, $\cos k \cdot \sqrt{1-a_{R}}$ Instruct as $\Delta \approx \frac{C_N}{C_T}$, it is necessary to determine $C_{\rm LL}$ which is as follows: The induced persion is that due to lift: dhi = -dl sin Ø sin y -dl cos Ø sin Bcos y Lift is a function of or which is \$ + \$ oc = $$\Theta + \Phi$$ = $\Theta + T_w (x - .75) - a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 - a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ - $a_0 tand_0 + (a_1 cos \psi + b_1 sin \psi)(1-k) tand_0$ Making small-angle assumptions, the total induced H-force $$H_1 = -\frac{b}{2\pi} \int_{0}^{2\pi} \frac{R}{2} \frac{e}{ac} \left[e^{-U_T U_P + ac} + ac U_T^2 + ac \right] d\psi d\tau$$ (47) imbatituiting the expressions for ∞ , eta , and remembering that $$\phi \approx \frac{U_P}{U_T}$$ and $U_T \circ \Omega R(x \neq x con \psi)$ above A . a . - a . cos 4 - b . sin 4 $$\begin{array}{l} A = a_{-} - a_{-} \cos \psi - b_{-} \sin \psi \\ A = \frac{b}{2\pi i} \int_{a_{-}}^{R} \frac{n^{2\pi}}{2\pi i} \frac{n^{2$$ continued! $$\begin{split} + & \left[\Theta_{\gamma q} + T_{\omega} \left(x - .73 \right) - a_{\omega} \tan d_{q} + a_{\gamma} \tan d_{q} \left(1 - h \right) \cos \psi \right. \\ + & b_{\gamma} \tan d_{q} \left(1 - h \right) \sin \psi - a_{\gamma} d_{\omega} - a_{\gamma} d_{\gamma} \left(1 - h \right) \sin \psi \\ + & \frac{\lambda}{\chi + \mu \sin \psi} \frac{(x - \hat{3})(i - h) a_{\gamma} \sin \psi}{\chi + \mu \sin \psi} \\ + & \frac{(x - \hat{3})(i - h) b_{\gamma} \cos \psi}{\chi + \mu \sin \psi} \frac{\mu \cos \psi}{\chi + \mu \sin \psi} \frac{\mu (i - h) a_{\gamma} \cos \psi}{\chi + \mu \sin \psi} \\ + & \frac{\mu (i - h) b_{\gamma} \sin \psi \cos \psi}{\chi + \mu \sin \psi} \left[\left(\chi + \mu \sin \psi \right)^{2} \right. \\ \left. \left(a_{\omega} - a_{\gamma} \cos \psi - b_{\gamma} \sin \psi \right) \cos \psi \right\} d\psi d\chi \end{split}$$ Performing the indicated multiplications, integ-ating, and non-dirensionslizing results in: $$\frac{2C_{N_{1}}}{6\pi^{2}} = \frac{1}{2} \left\{ -\lambda \Theta_{JL}(1-3) - T_{U}\lambda_{JL}\left(\frac{1-3^{2}}{2}\right) + \frac{3}{4} T_{U}\lambda_{JL}\left(1-\frac{3}{2}\right) \right.$$ $$+ \lambda a_{0} + \tan \delta_{0}\left(1-\frac{3}{2}\right) - \lambda b_{0} \tan \delta_{0}\left(1-h\right)\left(\frac{1-\frac{3^{2}}{2}}{2}\right)$$ $$+ \lambda a_{0} + \tan \delta_{0}\left(1-x_{0}\right) + c_{0} d_{0} \lambda_{0}\left(1-h\right)\left(\frac{1-x_{0}^{2}}{2}\right)$$ $$+ \lambda a_{1}\left(1-h\right)\left(\frac{1}{2}-\frac{3}{3}+\frac{3^{2}}{2}\right) + \Theta_{JR} a_{1}\left(1-h\right)d_{0}\left(\frac{1}{3}-\frac{3}{2}+\frac{3^{3}}{6}\right)$$ $$+ T_{U}a_{1}\left(1-h\right)\left(\frac{1}{4}-\frac{3}{3}+\frac{5^{4}}{12}\right) + \frac{3}{4} T_{U}\left(1-h\right)a_{1}\left(\frac{1}{3}-\frac{3}{2}+\frac{3^{3}}{6}\right)$$ $$- a_{0}a_{1} \tan \delta_{0}\left(1-h\right)\left(\frac{1}{5}-\frac{3}{2}+\frac{3^{4}}{6}\right) + \frac{3}{4} a_{1}b_{1} \tan \delta_{0}$$ $$\left(1-h\right)^{2} L_{L}\left(\frac{1}{2}-3+\frac{3^{2}}{2}\right) - c_{0} L_{0}\left(1-h\right)a_{1}\left(\frac{1-x_{0}^{2}}{3}-\frac{3-\frac{1-x_{0}^{2}}{2}}\right)$$ $$+ \lambda a_{1}\left(1-h\right)\left(\frac{1}{4}-3+\frac{3^{2}}{2}\right) - \frac{3}{4} c_{1} G_{1}\left(1-h\right)^{2} L_{0} a_{1}$$ $$\left(\frac{1-x_{0}^{2}}{2}-3\left(1-x_{0}\right)\right) + \frac{2L}{4} c_{1} G_{1}\left(1-h\right)^{2} L_{0} a_{1}$$ $$\left(\frac{1-x_{0}^{2}}{2}-3\left(1-x_{0}\right)\right) + \frac{2L}{4} c_{1} G_{1}\left(1-h\right)^{2} L_{0} a_{2}$$ $$\left(\frac{1-x_{0}^{2}}{2}+\frac{3^{2}}{2}\right) + \frac{2L}{4} c_{1}\left(1-h\right)^{2} L_{0} a_{2}$$ $$\left(\frac{1-x_{0}^{2}}{2}+\frac{3^{2}}{2}\right) + \frac{2L}{4} a_{0} a_{1} L_{0} + a_{0} a_{2}$$ $$\left(1-h\right)\left(1-\frac{3}{2}\right) + \frac{3}{16} T_{U} L_{0}^{2} a_{1} \left(1-h\right)\left(1-\frac{3}{2}\right) + \frac{L^{2}}{4} a_{0} a_{1}$$ $$\left(1-h\right)\left(1-\frac{3}{2}\right) + \frac{3}{16} T_{U} L_{0}^{2} a_{1} \left(1-h\right)\left(1-\frac{3}{2}\right) + \frac{L^{2}}{4} a_{0} a_{1}$$ $$\left(1-h\right)\left(1-\frac{3}{2}\right) + \frac{3}{16} T_{U} L_{0}^{2} a_{1} \left(1-h\right)\left(1-\frac{3}{2}\right) + \frac{L^{2}}{4} a_{0} a_{1}$$ $$\left(1-h\right)^{2} \left(1-h\right)^{2} \left(1-h\right)^{2}$$ $$\begin{split} &-\frac{3}{4} \ T_{\omega} \ a_{1} \ \mu^{2} \left(1-\frac{5}{3}\right) - a_{u} a_{1} \ t \ an \ d_{E} \left(\frac{1-\frac{5}{3}^{2}}{3}\right) - a_{u} \ a_{1} \\ &\frac{2 \mu^{2}}{4} \ t \ an \ d_{E} \left(1-\frac{5}{3}\right) - a_{u} a_{1} \ t \ an \ d_{E} \left(1-\frac{5}{3}\right) + a_{1} b_{1} \\ &\mu \ t \ an \ d_{E} \left(1-h\right) \left(\frac{1-\frac{5}{2}}{2}\right) - a_{u} a_{1} \frac{\mu^{2}}{4} \ t \ und_{E} \left(1-h\right) \left(1-\frac{5}{3}\right) \\ &- - a_{1}^{2} \ d_{n} \ a_{1} \left(\frac{1-h^{2}}{3}\right) - a_{2}^{2} \ d_{n} \ a_{1} \frac{\mu^{2}}{4} \left(1-h_{1}\right) - a_{2}^{2} \ d_{1} \frac{\mu^{2}}{2} \\ &- a_{1}^{2} \left(1-h\right) \left(\frac{1-h^{2}}{2}\right) + \lambda a_{1} \left(\frac{1-\frac{5}{2}^{2}}{2}\right) - \frac{\mu^{2}}{4} \frac{1}{4} \left(1-h_{1}\right) \\ &\left(\frac{1}{2} - \frac{5}{3} + \frac{5}{2}\right) - a_{u} b_{1} \left(1-h\right) \left(\frac{1}{3} - \frac{5}{2} + \frac{5}{2}\right) + \frac{\mu^{2}}{4} b_{1}^{2} \\ &\left(1-h\right) \left(\frac{1}{3} - \frac{5}{2} + \frac{5}{2}\right) - a_{u} b_{1} \frac{\mu^{2}}{4} \left(1-h\right) \left(\frac{5}{2} - 2 \cdot 5 + \frac{5}{2}\right) \\ &+ \mu a_{1}^{2} \left(\frac{1-\frac{5}{2}}{2}\right) - a_{2} b_{1} \frac{\mu^{2}}{4} \left(1-\frac{5}{2}\right) + \frac{4}{4} \mu a_{1}^{2} \left(1-h\right) \\ &\left(\frac{1-\frac{5}{2}}{2}\right) + \frac{\mu a_{2}^{2}}{4} \left(1-h\right) \left(\frac{1-\frac{5}{2}}{2}\right) \end{aligned}$$ Collecting all the tores, and eliminating all quadru, is and $$\begin{split} \frac{2C_{M_L}}{\sigma_{A}} &= \frac{1}{2} \left\{ \frac{2C_T}{\sigma_{A}} \, a_1 + \left(\Theta - a_0 t and_3\right) \left(\frac{1}{3} - \frac{5}{2} + \frac{5^4}{\omega}\right) \left(1 - h_1\right) a_1 \\ &= \alpha c_d \, d_0 \, \left(1 - h_1\right) \left[\left(\frac{1}{3} - \frac{x_1^4}{3}\right) - 5 \left(\frac{1}{2} - \frac{x_1^2}{2}\right) \right] a_1 \\ &= \left(\Theta - a_0 t and_0\right) \left(1 - \frac{5}{3}\right) \lambda_{J_1} + \alpha c_d \, d_0 \left(1 - x_1\right) \lambda_{J_2} \\ &= a_0 t and_0 \, \left(1 - h_1\right) \left(\frac{1 - \frac{5}{3}}{3}\right) a_1 - \frac{a_0 b_1 \, \left(1 - h_1\right)}{3} \\ &= \lambda \, b_1 t and_0 \, \left(\frac{1 - \frac{5}{3}}{2}\right) \left(1 - h_1\right) + \frac{T_W}{2} \, \mu_1 \, \lambda \left(\frac{1}{2} - \frac{3\frac{5}{3}}{2} + \frac{5^2}{3}\right) \\ &+ \alpha c_d \, d_1 \, t and_0 \, \left(\frac{1 - \frac{5^2}{3}}{2}\right) \left(1 - h_1\right) + \frac{T_W}{2} \, \mu_2 \, \lambda \left(\frac{1}{2} - \frac{3\frac{5}{3}}{2} + \frac{5^2}{3}\right) \\ &+ \lambda \left(1 - h_1\right) \left(1 - 2 \cdot \frac{5}{3} + \frac{5^2}{3}\right) a_1 \right\} \end{split}$$ This is the expression used to determine the induct joint of the 8-force to get the a' angle in the trim program. It has been jeduced to, and chacked with, the simple expression given by Gessov wind Myer (70). It is emphasized that the flap terms have a significant offect on the mannitude of the resultant rotor R-force. The profile portion due to blade drag is small. The moreoid drag term in equation 90 was neglected because it involved the product of two meanl quantities. Then, for a constant blade noise drag conficient: Non-distantionalizing: $$\frac{2C_{H_{\bullet}}}{\sigma_{A}} = \frac{m}{2a} C_{d_{\bullet}}$$ (101) This is added to canalies 100 for the
total H-force, The third true equation, pitching memont, is now developed. Fro. the discount the niteline coment is: The several items identified by number are defined an: Thrust Moment Hub Moment (1) $$M_{H} = \frac{Nb}{2} \cdot \Gamma^{2} I_{1} b \left[\frac{\pi}{5} a_{1} + \frac{5}{2} \left\{ m a_{0} D \cdot a_{1} t a_{1} d_{3} (i-k) \left(N \tau \frac{m^{2}}{4} b \right) + \alpha c_{3} d_{2} (i-k) \left(E + \frac{m^{2}}{4} F \right) \right\} \right]$$ Wing in Slipstream Wing out of Slipstream No. Functage 1'a : 1 Engine Exhaust Tip Ploats The various momen' airs that change with sing tilt are used in tabular form by the progress. A senter section lift curve slope C $_{L,\frac{1}{2}}$ of wing tilt. In this way, contensection stall 10 accounted for. CONTROL TO THEM . A longitudinal control input $|\psi^{i}_{i,j}\rangle$ is defined as follows: و' = و' دهه ۴٠ is induced, and where of soft, + disting + discouption the blade flap input. The also could be collected to concess ponding blade alaying through the tello in, in, instrollequations. The cyclic sconditivities, or account a clapping produced per degree of flap delicetion, and derived by investigating the conditions leading to a dynamic quilibrium of moments about the lapping hinge. First, the steamy thrust equalities used to determined: $$\frac{dT}{dx} = \frac{e}{2} caRU_T^2 = c$$ (160) where aC, we given in the hubshoomat decivation, is $$= \Theta_{18} + T_{w}(x-.75) - (a_{w} - a_{1}\cos\psi - b_{1}\sin\psi) + a_{1}d_{1}$$ $$= \omega_{u}\left(d_{v} + d_{1}\sin\psi + d_{2}\cos\psi\right) + \frac{\lambda}{\lambda + \mu + \sin\psi}$$ $$= \frac{(x-5)(1-h)}{\lambda + \mu + \sin\psi}\left(a_{1}\sin\psi - b_{1}\cos\psi\right) - \frac{\mu a_{1}\cos\psi}{\lambda + \mu + \sin\psi}$$ $$+ \frac{\mu(1-h)a_{1}\cos^{2}\psi}{\lambda + \mu + \sin\psi} + \frac{\mu(1-h)b_{1}\sin\psi + \cos\psi}{\lambda + \mu + \sin\psi}$$ $$+ h - C_{u}\left(d_{1}\sin\psi + d_{2}\cos\psi\right) + K + Land_{u}\left(-a_{1}\cos\psi - b_{1}\sin\psi\right)$$ $$+ \frac{\sqrt{\lambda}p}{\Omega R(\lambda + \mu + \sin\psi)} + \frac{\sqrt{\lambda}p(1-h)(a_{1} - a_{1}\cos\psi - b_{1}\sin\psi)}{\Omega R(\lambda + \mu + \sin\psi)}$$ The last two terms account for prinching velocity, and $$\begin{split} U_T &= \Omega R \left(\lambda + \mu \sin \psi \right) \\ U_T^2 &= \left(\Omega R \right)^2 \left(\lambda^2 + 2 \lambda \mu \cos \psi + \mu \mu^2 \sin^2 \psi \right) \end{split}$$ Substituting the expressions for U and C into equation less and its printing azioutharly, remembering that the even- $$T = \frac{1}{2\tau} \cdot \int_{0}^{2\pi} \int_{50^{+}T_{1}}^{1.0} dT d\psi$$ $$= \frac{e}{2} \cdot c(\Omega R)^{R} Re \left\{ \int_{50^{+}T_{1}}^{1.0} \left[\Theta_{18} x^{2} + \frac{\Theta_{18}}{2} \int_{0}^{2\pi} x^{2} + T_{w} x^{k} + T_{w} x^{k} \right] \right.$$ $$+ T_{w} \frac{x_{s} x^{k}}{2} - \frac{3}{4} T_{w} x^{k} - \frac{3}{8} T_{w} x^{k} - a_{s} t an \int_{0}^{2\pi} x^{k} \right.$$ $$- \frac{3e}{2\tau} t an \delta_{8} x^{2} - \frac{3ec}{2r} \int_{0}^{2\pi} d_{s} x^{k} - \frac{3ec}{2r} \int_{0}^{2\pi} d_{s} \frac{x^{k}}{2}$$ $$- \frac{3ec}{2r} \int_{0}^{2\pi} (1-k) x_{s} x + b_{s} t an \delta_{s} (1-k) x_{s} + \lambda x$$ $$- 2 \cdot \frac{(1-k)}{2} x_{s} (x - \frac{5}{2}) + \frac{x_{s} \Phi_{1}}{2} (1-k) x + \frac{8}{2} \frac{2e}{\Omega R} x$$ $$+ \frac{4}{\Omega R} a_{s} (1-k) x - \frac{t}{2} \frac{\lambda_{p} b_{s}}{\Omega R} (1-k) x^{2} \right]$$ Int grature with a spect to me correspond radius, and $$\begin{split} &\frac{2C_{T}}{\sigma_{A}} = \Theta_{3R} \left[\left(\frac{1 - \frac{5^{3}}{3}}{3} \right) + \mu^{2} \left(\frac{1 - 3}{2} \right) \right] + \frac{T_{bo}}{4} \left[\left(\frac{5^{4}}{3} - \frac{5^{4}}{3} \right) \right] \\ &- \mu^{2} \left(\frac{1}{2} - \frac{3}{2} + \frac{5^{2}}{3} \right) \right] + \lambda_{o} \left[\frac{4}{\Omega R} \left(1 - K \right) \left(\frac{1 - \frac{5^{2}}{2}}{2} \right) \right] \\ &- \tan d_{3} \left\{ \frac{1 - \frac{5^{3}}{3}}{3} + \mu^{2} \frac{1 - \frac{5}{2}}{2} \right\} \right] - \frac{2\pi c}{2J} J_{o} \left[\frac{1 - \kappa^{3}}{3} \right] \\ &+ \mu^{2} \frac{1 - \kappa^{3}}{2} - \frac{2\pi c}{2J} J_{o} \left((1 - K) \right) \mu \frac{1 - \kappa^{2}}{2} - \lambda \frac{1 - \frac{5^{2}}{2}}{2} \\ &+ \frac{4}{\Omega R} \left(\frac{1 - \frac{5^{2}}{2}}{2} \right) + \lambda_{o} \left[\left(1 - K \right) \left(\mu \frac{1 - \frac{5^{2}}{2}}{2} - \frac{\mu^{2}}{2} \left(\frac{1 - 5}{2} + \frac{5^{2}}{2} \right) \right) \right] \\ &+ b_{1} \left[\frac{1}{2} \sin J_{b} \left(1 - K \right) \mu \frac{1 - \frac{5^{4}}{2}}{2} - \frac{\kappa^{2} r}{2\Omega R} \mu^{2} \left(1 - \frac{5}{2} \right) \right] \end{split}$$. The accodynamic secont about the blade flapping hinge may be expressed as: $$\frac{dM}{dx} = R(x-\frac{3}{2}) \frac{dT}{dx}$$ $$= \frac{e}{e} L(xR)^{2} R^{2} dx \left[\Theta_{yg} \left(x^{2} + 2 x_{xx} \sin y + y_{xx}^{2} \sin^{2} y \right) \left(x - \frac{3}{2} \right) + T_{0} \left(x^{3} + 2 x_{yx}^{2} \sin y + x_{yx}^{2} \sin^{2} y \right) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} T_{0} \left(x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y \right) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left(x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y \right) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left(x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y \right) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + y_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y + x_{xx}^{2} \sin^{2} y} \right) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2 x_{yx} \sin y + x_{xx}^{2} \sin^{2} y + x_{xx}^{2} \sin^{2} y \right) \left(x - \frac{3}{2} \right)$$ $$= \frac{3}{4} d_{0} \left((x^{2} + 2$$ The strady moment components can be extracted, 200 integrating with respect to non-dimensional radius violes; - 4 2, b, (1-k)(x-5)(x min 4 1, = 21024) $$\begin{split} &\frac{2M}{51} = \Omega^{3} \left(\Theta_{75} \left[\left(\frac{1}{4} - \frac{5}{3} + \frac{5^{4}}{12} \right) + \frac{2\pi^{2}}{2} \left(\frac{1}{2} - 5 + \frac{5^{2}}{2} \right) \right] \\ &- 2 \left[\tan d_{3} \left\{ \left(\frac{1}{4} - \frac{5}{3} + \frac{5^{4}}{12} \right) + \frac{2\pi^{2}}{2} \left(\frac{1}{2} - \frac{5}{3} + \frac{5^{4}}{2} \right) \right\} \\ &- \frac{9\pi^{2}}{51R} \left(1 - k \right) \left(\frac{1}{5} - \frac{5}{2} + \frac{5^{4}}{6} \right) \right] \left(\frac{1}{3} - \frac{5}{2} + \frac{5^{4}}{6} \right) - \left(1 - k \right) \frac{2\pi}{2} \left\{ \frac{1 - 5^{3}}{3} - 5 \left(1 - 5^{2} \right) \right\} \right] \\ &+ k_{1} \left[\left(1 - k \right) \left(\frac{1}{3} - \frac{5}{2} + \frac{5^{3}}{6} \right) k_{1} d_{3} d_{4} d_{5} d_{4} - \frac{6\pi^{2}}{3R} \frac{4\pi}{2} \right] \\ &\left(\frac{1}{2} - 5 + \frac{5^{2}}{2} \right) \right] - \frac{2\pi^{2}}{\sqrt{3}} d_{5} \left[\left\{ \frac{1 - 2\pi^{3}}{4} - 5 \cdot \frac{1 - 2\pi^{3}}{3} \right\} \right] \\ &+ \frac{2\pi^{2}}{2} \cdot \left\{ \frac{1 - 2\pi^{3}}{2} - 5 \left(1 - k_{1} \right) \right\} \right] - \frac{2\pi^{2}}{\sqrt{3}} d_{5} \left[\left(1 - k \right) \right] d_{5} \\ &\left[\frac{1 - 2\pi^{3}}{3} - 5 \cdot \frac{1 - 2\pi^{3}}{2} \right] + \lambda \left(\frac{1}{5} - \frac{5}{2} + \frac{5^{4}}{6} \right) \\ &+ \frac{2\pi^{2}}{3R} \left(\left(\frac{1}{5} - \frac{5}{2} + \frac{5^{4}}{6} \right) \right) \right) \\ &= \frac{2\pi^{2}}{3} d_{6} \left(1 + 5 \right) \end{split}$$ Figs equation 106 the sine we aponents of moment $$\left(\frac{dM}{dx}\right)_{k+n} = \frac{e_i}{2} b(\Omega R)^2 R^2 a \left[\hat{a} \Theta_{i,j} A_i X_i(x-5) + 2T_{ij} A_i X_i^2 + (x-5) - \frac{3}{2}T_{ij} A_i X_i(x-5) - 2T_{ij} T_i T_j^2 A_i X_i^2 + (x-5) - \frac{3}{2}T_{ij} A_i X_i X_i(x-5) - \frac{3}{2}T_{ij} A_j A_i X_i^2 + (x-5) - \frac{3}{2}T_{ij} A_j A_j A_j^2 + (x-5) + \frac{3}{2}T_{ij} A_j A_j^2 + (x-5)^2 + \frac{3}{2}T_{ij} A_j A_j^2 + (x-5)^2 + \frac{3}{2}T_{ij} A_j A_j^2 + (x-5)^2 + \frac{3}{2}T_{ij} \frac{3}{2}T_{ij}$$ Integrating the previous expression with respect to non-dimensional radius violat. he sine component: $$\begin{split} \frac{2M}{\sqrt{1}} &= \Omega^2 \left\langle 2\Theta_{36} , \omega \left(\frac{1}{5} - \frac{2}{5} +
\frac{3^6}{6} \right) + A_{+} \right|_{1}^{1} - \left[\frac{4}{n} \frac{h}{R} \left(1^{-1} \frac{h}{A} \right) \right] \\ &= \left(\frac{1}{2} - 5 + \frac{3^2}{2} \right) - 2 \frac{4}{3} \sin J_5 \left(\frac{1}{5} - \frac{5}{2} + \frac{5^5}{6} \right) \right] \right\} \\ &= + A_{+} \left\{ \frac{\Delta h}{4} , \omega \left((1-h) \right) \left(\frac{1}{2} - 5 + \frac{5^2}{2} \right) - \left((1-h) \right) \left(\frac{1}{4} - \frac{25}{3} + \frac{5^4}{12} \right) \right. \\ &+ \frac{5^2}{2} - \frac{5^4}{12} \right) \right\} + h_{+} \left\{ \frac{4}{3} \sin J_6 \left((1-h) \right) \left(\frac{1}{4} - \frac{5}{3} + \frac{5^4}{12} \right) \right. \\ &+ \frac{5 \cos^2}{4} \left(\frac{1}{2} - 5 + \frac{5^2}{2} \right) \right] - \frac{4^4 h}{1R} \left((1-h) \right) \left(\frac{1}{3} - \frac{5}{2} + \frac{5^6}{6} \right) \right\} \\ &- \frac{2J_{+}}{3J_{-}} J_{+} \omega_{+} \left\{ \frac{1-h^6}{5} + \frac{5}{2} - \frac{1-h^2}{2} \right\} - \frac{J_{+}}{3J_{-}} J_{+} \left\{ \left(1-h \right) \right\} \\ &- \frac{2J_{+}}{3J_{-}} J_{+} \omega_{+} \left\{ \frac{1-h^6}{5} + \frac{3h^2}{4} \left(\frac{1-h^2}{2} + 5 \left(1-h \right) \right) \right\} \right\} \\ &+ \frac{T_{+}\omega_{+}}{12} + 2 \frac{J_{+}\omega_{+}}{3} \left(\frac{1}{2} - 5 + \frac{5^2}{2} \right) + \frac{q_{+}h_{+}}{11K} \omega_{+} \left(\frac{1}{2} - \frac{5}{2} + \frac{5^2}{2} \right) \right\} \end{split}$$ The construction of second can be extracted. There equal may be a $$\frac{\left(\frac{dM}{c \cdot x}\right)_{cos}}{\left(\frac{dM}{c \cdot x}\right)_{cos}} = \frac{e}{2} c (\Omega R)^{2} R^{2} a \left[-\frac{\sqrt{2} - c}{\sqrt{2}} \int_{z}^{z} (1 \cdot k) x^{2} (x - 5)\right]$$ $$- \frac{\sqrt{2} - c}{4 \sqrt{2}} \int_{z}^{z} (1 - k) x^{2} (x - 5) + a_{1} t an \int_{z}^{z} (1 - k) x^{2}$$ $$(x - 5) + a_{1} \frac{t an \int_{z}^{z} (1 - k) x^{2} (x - 5) + b_{1} x (x - 5)^{2}$$ $$(1 - k) - x a_{2} \left(1 - k\right) x (x - 5) + \frac{x^{2} b_{1}}{4} (1 - k) (x - 5)$$ $$- \frac{x^{2} k}{\Omega R} d_{1} (1 - k) x (x - 5)$$ integrating the previous expression with respect to nondiscussional radius yields: $$\begin{split} &\frac{2M}{31} = \Omega^{2} \left\langle -x_{1} a_{0} \left(1 - k\right) \left(\frac{1}{3} - \frac{5}{2} + \frac{5^{4}}{6}\right) + A_{1} \left(1 - k\right) \left\{ t \sin A_{0} \right\} \\ &\left[\left(\frac{1}{4} - \frac{5}{3} + \frac{5^{4}}{12}\right) + \frac{x_{1}^{2}}{4} \left(\frac{1}{2} - \frac{5}{3} + \frac{5^{4}}{2}\right) \right] - \frac{3^{4} h}{\Omega R} \\ &\left(\frac{1}{3} - \frac{5}{2} + \frac{5^{4}}{6}\right) + b_{1} \left\{ \left(1 - k\right) \left(\frac{1}{4} - \frac{25}{3} + \frac{5^{4}}{2} - \frac{5^{4}}{12}\right) \right. \\ &\left. + \frac{x_{1}^{2}}{4} \left(1 - k\right) x_{1} \left(\frac{1}{2} - \frac{5}{3} + \frac{5^{2}}{2}\right) \right\} - \frac{\partial^{2} h}{\partial J} J_{2} \left(1 - k\right) \\ &\left\{ \left[\frac{1 - k_{1}^{4}}{4} - \frac{5}{3} \frac{1 - k_{1}^{4}}{3} \right] + \frac{x_{2}^{2} \left[\frac{1 - k_{1}^{2}}{2} - 5 \left(1 - k_{1}\right) \right] \right\} \right. \end{split}$$ The inortia concert so out the Plapping has no by express thus $$-b_{i}\left(3-\frac{l_{ye}\tan \delta_{b}}{l}\right)\sin \psi$$ $$-b_{i}\left(3-\frac{l_{ye}\tan \delta_{b}}{l}\right)\sin \psi$$ (112) Recause of the pitching valouity, a corrolls accoloration is experienced, causing an extrain ethal face that must be included in the moment about the blade flag-ing large. Thus: OI : $$\frac{\Delta 2NI_{c}}{10^{12}} = \frac{49}{10}(1+5) \sin \psi$$ Equation the accomposite and invita conducts about the flapping bings, and incorporating the following redeficitions of the offset constants: $$A = \left(\frac{1-\frac{5}{3}}{3}\right) \qquad H = \frac{1-x_1^2}{4}$$ $$B = \left(1-\frac{5}{3}\right) \qquad J = \frac{1}{4} - \frac{5}{3}$$ $$C = -\frac{1}{4} + \frac{3}{4} \cdot \frac{5}{2} \qquad L = \frac{1}{2} - \frac{5}{3} + \frac{5}{2}$$ $$D = \frac{1-5^2}{2} \qquad MI = -\frac{1}{2+} + \frac{5}{4} - \frac{5}{4} \cdot \frac{5^2}{4}$$ $$E = \frac{1-x_1^3}{5} \qquad P = \frac{1}{4} - \frac{25}{5} + \frac{5^2}{2}$$ $$F = 1-x_1 \qquad N = \frac{1}{3} - \frac{5}{2} - \frac{5^2}{4}$$ $$G = \frac{1-x_1^3}{2} \qquad Q = \frac{5}{2} - 5^2 + \frac{5^3}{2}$$ yields the star corporant; $$\frac{44}{1\Omega}(1+5) - b_1(5 - \frac{1}{14} \frac{\tan \delta_0}{1}) \frac{2}{k} = 2\Theta_{JL} + a_0 \left\{ AL \left(\frac{1}{1} - AL \right) - 2 \frac{1}{14} \frac{1}{14} \frac{1}{14} \right\} + a_1 \left\{ \frac{AL}{4} (1-A) - 2 \frac{1}{14} \frac{1}{14} \frac{1}{14} \right\} + a_1 \left\{ \frac{AL}{4} (1-A) - 2 \frac{1}{14} \frac{1}{14} \frac{1}{14} \right\} + a_2 \left\{ \frac{AL}{4} (1-A) - 2 \frac{1}{14} \frac{1}{$$.a. the cosmic component, a sourcing d. - 9: $$-a_{1}\left(3 - \frac{1}{1_{1}} \tan \frac{1}{9}\right) \frac{2}{5} = -2 \cdot a_{2}\left(1 - k\right) N + a_{1}\left(1 - k\right) \left\{ \tan \frac{1}{9} \left(1 - k\right) + \frac{2}{1_{1}} \left$$ The foragoing control equations are evaluated by treating inversion procedure as an integral part of the firm group are. They are also separately evaluated for arbitrary values of $\lambda_{\rm c}$, $\lambda_{\rm c}$, and $C_{\rm T}$, some of the results are presented in Figure 41. . In survey, the whole trimming procedure can be outlined as: . Fc. a particular Pg, an instant estimate of T' is wild, together with relitial values of q'. The dynamic pressure (q) is calculated for the given weight, or required (", for the force qualification equations. Then, T, p., X. and k are calculated, as well as C, from the C, equation. The control constions are entered, and all and all are determined. The angle T is adjusted by the a^* , and this loop repeated until Δa is within therefore. The meant equation is then used with the estimated a_1 , and the whole process repeated with the new a_1 until C^* is either zero in the specified value. Figure 38 Rotor Control Sensitivity To assure setisfactory handling qualities, pilots' opinions that are statistically significant and ememble to design must be correlated in terms of Unic dynamic characteristics of the siteratt. One such item for hovering flight, proposed in 1936 in RAC Report G-90 (1), is angular acceleration. This supers to be a reasonable criterion because angular accelerations of the aircraft produce proportional crasulational acceleration at the pilot's mest - and transl-tional acceleration has one of the siportent items of sensory information used by the pilot in flight. This proposal was suggested by the results of helicopier flight testing conducted by the RACA (TN 2439, 1932)(64), and roinforced by the Dureau of Navel Wespone (A.D.Crim, 1930)(65). Raval Weapone (A.B.Crim, 1959)(65). Angular acceleration is proportional to the ratio of control moment-of-inertia. It was shown in RAC Report G-80 that for geometrically similar sintraft, moment of inertia is proportional to the aquasi of the grows weight, and control moment proportional to the grows weight to the 3/2 power. It can be deduced that angular acceleration is proportional to the ratio of control moment to the moment of inertia, or the reciprocal of the square root of grows weight. The results of this analysis (181d) indicates that for geometrically similar afford the square root of the square root of the grows resight, and that the seculerations fell at the pilot's went remain constant squareless of grows weight because, also, the distance to the pilot's went is proportional to the square of the grows weight. This desiratives that angular acceleration is one good universal parameter for control comparison of geometrically similar aircraft. Of course, the initial accelerations produced by control inputs are not the only criteris determining good handling qualities of a hovering and los-apsed sircraft. The basic dasping characteristics of the configuration itself enters into the determination of illot upinion. Salairs and Tapscott have suply desonstrated this (NACA TN D-58) (65). They prosented boundaries for acceptable handling qualities in terms of initial angular acceleration per inch of stick deflection versus the angular velocity of damping derivatives about the three area. These boundaries were obtained using a variable stability H-5 halicopter, and were estended by Tapscott to helicopters of greater weight (IAS Paper 60-51)(67). Bowever, VIOL aircraft, having wings and engines and nacelles outboard of the centerline, are geometrically quite dissimilar to a helicoptor like the N-5. The analysis of KaC Report G-PO showed that meants of incria are proportional to the square of the gross weights only for geometrically similar aircraft. This same conclusion is also implied by A'Harrah and Kwimtowski (IAS paper 61-62) (68) insessuch as dissimilar aircraft will inve different values of the speed derivatives. To apply the boundaries outained from the variable stability helicopter to VTOL aircraft it may be gare nearly correct to which the boundaries as follows: $$\frac{N_1}{I_v} = \frac{M}{I_H} \frac{\left(\frac{M_v}{M_H}\right)^{3/2}}{\frac{f_v}{I_H}}$$ where the "Y" refers to the VIOL and the "H" to the This was done for the K-lbB and the results are shown in Figure 89. This ligure is a reproduction of the criteria charts in Tapacott's lab Paper (67). The boundaries changed considerably except for the case where the ratio of areas weight to moment of inertia was marily the associated which cases - in pitch. Referring to the rolling mode of Figure 49, the K-16B exceeds the control sensitivity required for acceptable rolling control for an acceptable natural damping derivative. (In the K-16B this can be readily investigated because rotor control sensitivity can be varied in flight and, with stability sugentation, the damping derivative can be altered. The same commont applies to the other two modes). According to Tapacott's criteria, the natural characteristics in yew are unacceptable (Figure 89). Figure 89 Handling Qualities Boundaries from
spacett Although lapacott's work represents a good etart in determining good handling qualities criteria, more needs to be done to broaden them so V'STOL sicraft. The addition of more data to establish reasonable criteria was a prime purpose of the X-166 program and explains the degree of flexibility incorporated into the aircraft systems. The chairs of damping as one of the criteria was a wise one for the basic ristriction that carried the already of the basic ristriction of the already control. Here again, however, sore enters into the discretivent control. Here again, however, sore enters into the discretivent of the already again, however, sore enters into the discretivent of the already again, however, sore enters into the discretivent of the angular velocity damping. This was discussed by A'Mariah, etal, in INS paper of-62 (An) which shows that the static stability derivatives also enter into the determination of the aircraft damping ratio, as well as do the speed stability derivatives. The characteristics developed by A'Mariah give a good indication of the aircraft's damping characteristic, which can be resembled of the oscillation. If the desping characteristics are specified in this joine, satisfaction with this phase of handling qualities will be assured because it deals directly with the entire aircraft's not just one factor. The criteria charts developed by A'Mariah are reproduced in Figure 90, upon which are spotted the K-108 characteristics. Results contained during handling qualities flight tests of besically outside allocatt, such as VTOL's and helicopters, must be conselled in terms such as the foregoing to aliminate the effect of geometric dissimilarities. The emiscretistics of the K-168 can be so varied that sufficient flight test data can be obtained to determine estisfactory demping and control sensitivities boundaries. The boundaries established by A'Harrah were detorained using a VTOL simulator. Pilots' opinions of simulations of sircraft cannot be espected to be the same as those of the sircraft itself, for no simulator presents Figure 90 Handling qualities boundaries trea Cherryte a perfect migulation. For example, the angular and translational accelerations may not be duplicated. Neverthelens, a simulation can be useful in comparing assulations of different attriate on a relative basis. It is only when these results are transferred to an absolute scale the expected to influence prints' opinions of attisfactory control effectiveness. Assure these are the relationship between translational and angular scoleration as a function of speed. This infalliability is apparent to the pilot in the mass eith which he can howel user a spot while in goody attistion with minimus rotation. The helicopter approaches this, if substantial rotation had to proceed any translation with minimus rotation. The helicopter approaches this, if substantial rotation had to proceed any translation the resulting rise lag would induce a tendency on the part of the pilot to overcontrol. This is objectionable! There is, then, as a relationship between translations of the control of a howering aircraft. This effect chanted deteriorate with speed to the angular type of the different chanted deteriorate with speed to the angular type of the first them the establishment of good control of the K toP still result in too tent translations! At the of point that the bedit opter-type cyclic control of the K toP still result in too tent translations! ### APPENDIX F K-16B PERFORMANCE. A summary of the performance of the K 168 ipresented in Table VII and the acceptancing SW charts. Figure 91. The performance was calculated using standard performance analysis methods, and uses the data from both the 2/8-cale model wind tunnel tests at DBBs and the full-scale tests at ARC. The analysis assumes the product improvements of the perpulsive rotor as presented carties in this report. For mostulness in a flying qualitie, research program the ampliane should have a nectain minimum performance embling it to explore all regimes in which Violatical Right be expected to perfora. Every offert was made to assure such performance for the k-10% For weitheal Hight of the helds the resolution force weight ratio (F W) at the coincil give, weight of 9300 15. In 1.00, which leads to a howering ceiling of 2000 feet. This is equivalent to a 400 feet vertical rate of elab, which should be adequate for a control at 1 startill evaluation in vertical Hight. Written exists a 15th evaluation in vertical Hight. Written exists for formance with 1255-086 engines in shown in Figure 91 In forward flight at military jower from both engines the rate of alimb is 0000 fpm and the service conting is 05,000 feet. At formal fated power the fate of climb is 0500 jpm, and the service cerling as 23,000 feet. Instance as the hovering requirement calls for two TDS-GES engines, circing can be as supplished most efficiently by operation one employment of most power rather than both engines as pertual power. It this to done, with presenting installed tanking the range is approximately 200 as gibes. From a hover the k-16H is capable of conversing to a speed of ablances, the flaps-up stalling speed, in 12 seconds in a total distance of 850 feet (Figure 92). This calculated result picouses that the priot will-on timusily till the wing at its maximum size (5.4 deg/acc) and keep the hull level using longitudinal central Perhaps a more realistic transition was that performed by a pilot during the simulator studie of the airplance, this is also plotted on Figure 97. In this case the priot initially accelerated more slowly by "beopring" the tilt ## TABLE VII #### Summary of Perfermance (Standard Conditions) | Notacl Great Weight | 9 300 | |---|------------------------| | Mexicon Speed (MRP)
See Level
10,000 feet | 211 hts
215 htm | | Maximum Rate of Citmb - 51 (MRP) | 6000 FPM | | Mexicans Rate of Climb - St (NRP) | 3840 125 | | Vertical Rate of Climb - St | 400 FPM | | Service Culling (MRCP) | 38,000 11 | | Service Colling (RRP) | 23,000 ft | | Boser Colling | 2,400 ft | | Range - St - (780# full)
Single Singles | | | Single angles
Two begins | 190 n. mi
130 n. mi | | Speed for Maximum Runge | | | Sin, le Engine
Two Engire | 130 kts
140 kts | | Nexisur Endurance (780# fuel) | | | Single Engine
Two Engine | 1.95 hrs
1.25 hrs | | Speed for Maximum Endurance | | | Single Empine
Two Empine | 93 kts
79 kts | | HOVET Kndmiknee (780# fual) | 0.52 hr | | #12,000# Gross Weight STOL Operation | | | Pistance over 50 foot obstacle (zero wion - sou runway) | 514 ft | **で組みたる。** は、まれなかた。こばられる。 Vigure SAC Charta button. The return transition to hover from the simulator studies is also shown on the same figure. The total distance travelled in slowing down from 100 knots was 650 feet A time history of the K-10B doseont following a mingle engine fatious during herer is shown in Figure 93. The descent was calculated by a stop-by-step analysis using the data of NACA TH 3037 (48), re; this, it was assumed that the remaining engine shares its military power equally between the rotors. During the descent, the fuseling attitude to maintained level by longitudinal control. The rates of sing till (65 larges) in 3 seconds, and in 12 seconds) correspond to the design emergency rate and the normal rate. At extremeds above NO knots, allitude can be maintained on one engine. Though it is possible for the wing to be cranked down using batters emply, with a total power loss at 350 test recovery would be the same as that with a freely failing safe. Figure 94 shows the STO, characteristics of the main at 12,000 lb_come weight, which is a limiting condition of the JUP-2 limiting gover at 6 ips withing speed. The curves were calculated at constant wing tilt angles with the exception of the just marked "warned tilt". Although the sirplinia left the ground in whost a distances as the wing tilt was not as higher angles, the air drag was so large at these angles that more distance was covered in the climbout. The minimum distance appeared to occur at a tilt engle of $10\ degrees$. Bust of the calculations were made for a sing flap angle ($\sigma_{\rm fit}^2$) of 20 degrees because the available data indicated that this angle yielded the highest maximum lift-drag ratition with the 40 degree flap def.ection, homeower, the greater lift resulted in so much shorter ground out (85 dect shorter) that the 50 foot altitude was cleared in 42 feet less. Another type of take-off was completed by assuming that the wing tilt drive was activated at the beginning of the take-off run until a 19 degree tilt angle was attained. I this way, the large net thought for awailable with low sing tilt could be off) less, But wome lifting force was also lost and the ground run was shortened by only 25 feet, but this case a rate of wing tilt of 4.1 degree was assumed. Another possible type of take-off is for the pilot to nome the simplane down as some as the elevator will have some effect, and accelerate without climbing until the speed for bost angle of climb is attained. However, a cursory examination indicated that so much ground would not be recovered by the greater climb that it could not be recovered by the greater climb angle. Berigertal Distance Fort Figure Wa. Transcript Acceleration and Deceleration. Single engine power failure. Fuselage maintained horizontal $\binom{650\cdot12}{650\cdot1}$ nec. 8 Rate of sing attitude change $\binom{650\cdot12}{650\cdot1}$ nec. 3 Figure 03 Time History - Single Engine Recovery Pigure 94 K 10-b \$10L Take-Off